Upper Bounds for Proof-Search in a Sequent Calculus for Relational Equations

1982 ◽  
Vol 28 (14-18) ◽  
pp. 239-246 ◽  
Author(s):  
Wolfgang Schönfeld
2020 ◽  
Vol 30 (1) ◽  
pp. 281-294
Author(s):  
Vladimir N Krupski

Abstract The formal system of intuitionistic epistemic logic (IEL) was proposed by S. Artemov and T. Protopopescu. It provides the formal foundation for the study of knowledge from an intuitionistic point of view based on Brouwer–Heyting–Kolmogorov semantics of intuitionism. We construct a cut-free sequent calculus for IEL and establish that polynomial space is sufficient for the proof search in it. We prove that IEL is PSPACE-complete.


10.29007/p1fd ◽  
2018 ◽  
Author(s):  
Ozan Kahramanogullari

The deep inference presentation of multiplicative exponential linear logic (MELL) benefits from a rich combinatoric analysis with many more proofs in comparison to its sequent calculus presentation. In the deep inference setting, all the sequent calculus proofs are preserved. Moreover, many other proofs become available, and some of these proofs are much shorter. However, proof search in deep inference is subject to a greater nondeterminism, and this nondeterminism constitutes a bottleneck for applications. To this end, we address the problem of reducing nondeterminism in MELL by refining and extending our technique that has been previously applied to multiplicative linear logic and classical logic. We show that, besides the nondeterminism in commutative contexts, the nondeterminism in exponential contexts can be reduced in a proof theoretically clean manner. The method conserves the exponential speed-up in proof construction due to deep inference, exemplified by Statman tautologies. We validate the improvement in accessing the shorter proofs by experiments with our implementations.


Author(s):  
Neil Tennant

Parallelized elimination rules in natural deduction correspond to Left rules in the sequent calculus; and introduction rules correspond to Right rules. These rules may be construed as inductive clauses in the inductive definition of the notion of sequent proof. There is a natural isomorphism between natural deductions in Core Logic and the sequent proofs that correspond to them. We examine the relations, between sequents, of concentration and dilution; and describe what it is for one sequent to strengthen another. We examine some possible global restrictions on proof-formation, designed to prevent proofs from proving dilutions of sequents already proved by a subproof. We establish the important result that the sequent rules of Core Logic maintain concentration, and we explain its importance for automated proof-search.


2020 ◽  
Vol 30 (2) ◽  
pp. 663-696
Author(s):  
Ian Shillito

Abstract We present a labelled sequent calculus for a trimodal epistemic logic exhibitied in Baltag et al. (2017, Logic, Rationality, and Interaction, pp. 330–346), an extension of the so called ‘Topo-Logic’. To the best of our knowledge, our calculus is the first proof-calculus for this logic. This calculus is obtained via an adaptation of the label technique by internalizing a semantics over topological spaces. This internalization leads to the generation of two kinds of labels in our calculus and the labelling of formulae by pairs of labels. These novelties give tools to provide a simple calculus that is intuitively connected to the semantics. We prove that this calculus enjoys many structural properties such as admissibility of cut, admissibility of contraction and invertibility of its rules. Finally, we exhibit a proof search strategy for our calculus that allows us to prove completeness in a direct way by the extraction of a countermodel from a failure of proof. To define this strategy, we design a tool for controlling the generation of labels in the construction of a search tree, although the termination of this strategy is still open.


2015 ◽  
Vol 28 (4) ◽  
pp. 809-872
Author(s):  
Zhé Hóu ◽  
Rajeev Goré ◽  
Alwen Tiu

2002 ◽  
Vol 67 (1) ◽  
pp. 35-60 ◽  
Author(s):  
A. Carbone

AbstractThe logical flow graphs of sequent calculus proofs might contain oriented cycles. For the predicate calculus the elimination of cycles might be non-elementary and this was shown in [Car96]. For the propositional calculus, we prove that if a proof of k lines contains n cycles then there exists an acyclic proof with (kn+1) lines. In particular, there is a polynomial time algorithm which eliminates cycles from a proof. These results are motivated by the search for general methods on proving lower bounds on proof size and by the design of more efficient heuristic algorithms for proof search.


1992 ◽  
Vol 57 (3) ◽  
pp. 795-807 ◽  
Author(s):  
Roy Dyckhoff

Gentzen's sequent calculus LJ, and its variants such as G3 [21], are (as is well known) convenient as a basis for automating proof search for IPC (intuitionistic propositional calculus). But a problem arises: that of detecting loops, arising from the use (in reverse) of the rule ⊃⇒ for implication introduction on the left. We describe below an equivalent calculus, yet another variant on these systems, where the problem no longer arises: this gives a simple but effective decision procedure for IPC.The underlying method can be traced back forty years to Vorob′ev [33], [34]. It has been rediscovered recently by several authors (the present author in August 1990, Hudelmaier [18], [19], Paulson [27], and Lincoln et al. [23]). Since the main idea is not plainly apparent in Vorob′ev's work, and there are mathematical applications [28], it is desirable to have a simple proof. We present such a proof, exploiting the Dershowtiz-Manna theorem [4] on multiset orderings.Consider the task of constructing proofs in Gentzen's sequent calculus LJ of intuitionistic sequents Γ⇒ G, where Γ is a set of assumption formulae and G is a formula (in the language of zero-order logic, using the nullary constant f [absurdity], the unary constant ¬ [negation, with ¬A =defA ⊃ f] and the binary constants &, ∨, and ⊃ [conjunction, disjunction, and implication respectively]). By the Hauptsatz [15], there is an apparently simple algorithm which breaks up the sequent, growing the proof tree until one reaches axioms (of the form Γ⇒ A where A is in Γ), or can make no further progress and must backtrack or even abandon the search. (Gentzen's argument in fact was to use the subformula property derived from the Hauptsatz to limit the size of the search tree. Došen [5] improves on this argument.)


Sign in / Sign up

Export Citation Format

Share Document