Contributions on the dynamic simulation of the virtual model of the human knee joint

2009 ◽  
Vol 40 (1-2) ◽  
pp. 73-81 ◽  
Author(s):  
D. Tarnita ◽  
D.N. Tarnita ◽  
N. Bizdoaca ◽  
D. Popa
2021 ◽  
Vol 11 (6) ◽  
pp. 2541
Author(s):  
Kheireddine Zehouani ◽  
Oldal István

The human knee joint usually suffers progressive deterioration with time. The conventional cure of this issue is to replace it with an alternate knee by applying the prosthesis implant. The reason is that the process causes the abrasion of the different materials rather than just sliding or rolling. This study aims to develop the numerical measurement of the knee prosthesis’s geometry, which fulfils the mechanical requirements of the human knee. The MSC.ADAMS programme was applied to demonstrate the movement of the human knee joint in terms of rotation and flexion. The changes between the condyles of the developed multibody of the prosthesis related to the flexion angle ranging from 20–120° were investigated and presented. The boundary conditions were determined, and simulations performed using the ADAM’s programme. An average value of 0.7 was reached for the slip ration, with the maximum getting up to 0.79. An angle between 110–120° for the flexion angle was obtained. It can be said that the application of the multibody model saves time as there is no involvement of the tibia and the femur as required for the knee prosthesis. More importantly, as the application of the test machine is omitted in our process, our model’s approximations to a human knee are carried out directly. Without cost, several measurements for the knee prosthesis could be made and repaired. The study results provide the necessary insight for future tests regarding the movement of the knee joint.


2018 ◽  
Vol 00 (1) ◽  
pp. 109-118
Author(s):  
Enas Y. Abdullah ◽  
◽  
Naktal Moid Edan ◽  
Athraa N. Kadhim ◽  
◽  
...  

1985 ◽  
Vol 18 (7) ◽  
pp. 541
Author(s):  
Ph. Edixhoven ◽  
R. Huiskes ◽  
Th.J.G. van Rens ◽  
T.J.J.H. Slooff

2014 ◽  
Vol 15 (5) ◽  
pp. 7250-7265 ◽  
Author(s):  
Congming Zhang ◽  
Xiaochun Wei ◽  
Chongwei Chen ◽  
Kun Cao ◽  
Yongping Li ◽  
...  

2019 ◽  
Vol 11 (1) ◽  
pp. 27-30
Author(s):  
Gábor Péter Balassa

Abstract The necessity for the knee prosthesis is confirmed by the large increase in the number of patients suffering from arthrosis, which is a present-day disease. Despite this need, there doesn’t exist an optimal knee prosthesis. Nowadays the development of the knee prostheses is progressing. It is very difficult to define the required geometry with traditional methods, because the movement conditions to be created by the prostheses should be similar to the movements of the human knee. During previous research the biomechanical research team of the Szent István University occupied with experimental measurements of the healthy human knee joint movement. In this paper I would like to introduce a method of prosthesis geometry development. As a result, a knee prosthesis geometry has been created which is approaching the movement form of the real human knee joint.


Sign in / Sign up

Export Citation Format

Share Document