scholarly journals Ectomycorrhizal and saprotrophic fungi respond differently to long‐term experimentally increased snow depth in the High Arctic

2016 ◽  
Vol 5 (5) ◽  
pp. 856-869 ◽  
Author(s):  
Sunil Mundra ◽  
Rune Halvorsen ◽  
Håvard Kauserud ◽  
Mohammad Bahram ◽  
Leho Tedersoo ◽  
...  
Author(s):  
Shigehiko ODA ◽  
Takuya MATSUURA ◽  
Masashi SHIMOSAKA ◽  
Taichi TEBAKARI
Keyword(s):  

2016 ◽  
Vol 121 (5) ◽  
pp. 1236-1248 ◽  
Author(s):  
Philipp R. Semenchuk ◽  
Casper T. Christiansen ◽  
Paul Grogan ◽  
Bo Elberling ◽  
Elisabeth J. Cooper

2021 ◽  
Author(s):  
Isolde Glissenaar ◽  
Jack Landy ◽  
Alek Petty ◽  
Nathan Kurtz ◽  
Julienne Stroeve

<p>The ice cover of the Arctic Ocean is increasingly becoming dominated by seasonal sea ice. It is important to focus on the processing of altimetry ice thickness data in thinner seasonal ice regions to understand seasonal sea ice behaviour better. This study focusses on Baffin Bay as a region of interest to study seasonal ice behaviour.</p><p>We aim to reconcile the spring sea ice thickness derived from multiple satellite altimetry sensors and sea ice charts in Baffin Bay and produce a robust long-term record (2003-2020) for analysing trends in sea ice thickness. We investigate the impact of choosing different snow depth products (the Warren climatology, a passive microwave snow depth product and modelled snow depth from reanalysis data) and snow redistribution methods (a sigmoidal function and an empirical piecewise function) to retrieve sea ice thickness from satellite altimetry sea ice freeboard data.</p><p>The choice of snow depth product and redistribution method results in an uncertainty envelope around the March mean sea ice thickness in Baffin Bay of 10%. Moreover, the sea ice thickness trend ranges from -15 cm/dec to 20 cm/dec depending on the applied snow depth product and redistribution method. Previous studies have shown a possible long-term asymmetrical trend in sea ice thinning in Baffin Bay. The present study shows that whether a significant long-term asymmetrical trend was found depends on the choice of snow depth product and redistribution method. The satellite altimetry sea ice thickness results with different snow depth products and snow redistribution methods show that different processing techniques can lead to different results and can influence conclusions on total and spatial sea ice thickness trends. Further processing work on the historic radar altimetry record is needed to create reliable sea ice thickness products in the marginal ice zone.</p>


Author(s):  
S. R. Fassnacht ◽  
M. Hultstrand

Abstract. The individual measurements from snowcourse stations were digitized for six stations across northern Colorado that had up to 79 years of record (1936 to 2014). These manual measurements are collected at the first of the month from February through May, with additional measurements in January and June. This dataset was used to evaluate the variability in snow depth and snow water equivalent (SWE) across a snowcourse, as well as trends in snowpack patterns across the entire period of record and over two halves of the record (up to 1975 and from 1976). Snowpack variability is correlated to depth and SWE. The snow depth variability is shown to be highly correlated with average April snow depth and day of year. Depth and SWE were found to be significantly decreasing over the entire period of record at two stations, while at another station the significant trends were an increase over the first half of the record and a decrease over the second half. Variability tended to decrease with time, when significant.


2021 ◽  
Vol 101 (2) ◽  
pp. 80-87
Author(s):  
A.G Terekhov ◽  
◽  
N.I. Ivkina ◽  
N.N. Abayev ◽  
A.V. Galayeva ◽  
...  

The Snow Depth FEWS NET daily product was used to analyze snowy regime of the upper part of the River Emba basin from January 1 to April 30 for the period of 2001...2020. The Emba River basin is situated in Kazakhstan at the Eastern coast of the Caspian Sea. The area is characterized by the arid and extreme continental climate with dry-steppe and semi-desert landscapes. The population is small and the anthropogenic impact on the snow cover is minimal there. These conditions give an opportunity to identify the natural tendency in long-term changes of snow covering in semidesert zone of Kazakhstan. This paper describes the characteristics of the formation and destruction of the snow cover in the last 20 years. It was indicated that snowy regime has a trigger structure including two states; low-snowy regime and others years. It was shown that the snowy conditions are triggered. There are two modes, the first, as a low-snowy regime (up to 50 % of the entire sample) and the second mode includes other years. Significant variations of snow depth in various years masked many years’ tendencies of snow cover characteristics. But low-snowy regime was observed four times during five last years that can relate with modern decreasing snow covering in semi-desert zone of Kazakhstan.


2019 ◽  
Vol 74 (4) ◽  
pp. 160-168
Author(s):  
L. G. Bogatyrev ◽  
N. I. Zhilin ◽  
F. I. Zemskov ◽  
M. M. Karpukhin ◽  
A. I. Benediktova ◽  
...  
Keyword(s):  

2017 ◽  
Vol 11 (1) ◽  
pp. 191-215 ◽  
Author(s):  
Torbjørn Ims Østby ◽  
Thomas Vikhamar Schuler ◽  
Jon Ove Hagen ◽  
Regine Hock ◽  
Jack Kohler ◽  
...  

Abstract. Estimating the long-term mass balance of the high-Arctic Svalbard archipelago is difficult due to the incomplete geodetic and direct glaciological measurements, both in space and time. To close these gaps, we use a coupled surface energy balance and snow pack model to analyse the mass changes of all Svalbard glaciers for the period 1957–2014. The model is forced by ERA-40 and ERA-Interim reanalysis data, downscaled to 1 km resolution. The model is validated using snow/firn temperature and density measurements, mass balance from stakes and ice cores, meteorological measurements, snow depths from radar profiles and remotely sensed surface albedo and skin temperatures. Overall model performance is good, but it varies regionally. Over the entire period the model yields a climatic mass balance of 8.2 cm w. e.  yr−1, which corresponds to a mass input of 175 Gt. Climatic mass balance has a linear trend of −1.4 ± 0.4 cm w. e.  yr−2 with a shift from a positive to a negative regime around 1980. Modelled mass balance exhibits large interannual variability, which is controlled by summer temperatures and further amplified by the albedo feedback. For the recent period 2004–2013 climatic mass balance was −21 cm w. e.  yr−1, and accounting for frontal ablation estimated by Błaszczyk et al.(2009) yields a total Svalbard mass balance of −39 cm w. e.  yr−1 for this 10-year period. In terms of eustatic sea level, this corresponds to a rise of 0.037 mm yr−1. Refreezing of water in snow and firn is substantial at 22 cm w. e.  yr−1 or 26 % of total annual accumulation. However, as warming leads to reduced firn area over the period, refreezing decreases both absolutely and relative to the total accumulation. Negative mass balance and elevated equilibrium line altitudes (ELAs) resulted in massive reduction of the thick (>  2 m) firn extent and an increase in the superimposed ice, thin (<  2 m) firn and bare ice extents. Atmospheric warming also leads to a marked change in the thermal regime, with cooling of the glacier mid-elevation and warming in the ablation zone and upper firn areas. On the long-term, by removing the thermal barrier, this warming has implications for the vertical transfer of surface meltwater through the glacier and down to the base, influencing basal hydrology, sliding and thereby overall glacier motion.


2011 ◽  
Vol 17 (10) ◽  
pp. 3187-3194 ◽  
Author(s):  
ERIC G. LAMB ◽  
SUKKYUN HAN ◽  
BRIAN D. LANOIL ◽  
GREG H. R. HENRY ◽  
MARTIN E. BRUMMELL ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document