Hot Topic: Epigenetics in Parkinson's Disease: A New Frontier for Disease‐Modifying Therapies

2020 ◽  
Author(s):  
Makayla K. Portley ◽  
Sonja W. Scholz
2019 ◽  
Vol 30 (7) ◽  
pp. 709-727 ◽  
Author(s):  
Ava Nasrolahi ◽  
Fatemeh Safari ◽  
Mehdi Farhoudi ◽  
Afra Khosravi ◽  
Fereshteh Farajdokht ◽  
...  

Abstract Parkinson’s disease (PD) is a progressive neurological disorder characterized by degeneration of dopaminergic neurons in the substantia nigra. However, although 200 years have now passed since the primary clinical description of PD by James Parkinson, the etiology and mechanisms of neuronal loss in this disease are still not fully understood. In addition to genetic and environmental factors, activation of immunologic responses seems to have a crucial role in PD pathology. Intraneuronal accumulation of α-synuclein (α-Syn), as the main pathological hallmark of PD, potentially mediates initiation of the autoimmune and inflammatory events through, possibly, auto-reactive T cells. While current therapeutic regimens are mainly used to symptomatically suppress PD signs, application of the disease-modifying therapies including immunomodulatory strategies may slow down the progressive neurodegeneration process of PD. The aim of this review is to summarize knowledge regarding previous studies on the relationships between autoimmune reactions and PD pathology as well as to discuss current opportunities for immunomodulatory therapy.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Scott Ayton ◽  
Peng Lei

Parkinson’s disease (PD) is a neurodegenerative disorder characterized by motor deficits accompanying degeneration of substantia nigra pars compactor (SNc) neurons. Although familial forms of the disease exist, the cause of sporadic PD is unknown. Symptomatic treatments are available for PD, but there are no disease modifying therapies. While the neurodegenerative processes in PD may be multifactorial, this paper will review the evidence that prooxidant iron elevation in the SNc is an invariable feature of sporadic and familial PD forms, participates in the disease mechanism, and presents as a tractable target for a disease modifying therapy.


2019 ◽  
Vol 11 (520) ◽  
pp. eaba1659 ◽  
Author(s):  
Valina L. Dawson ◽  
Ted M. Dawson

To date, there is no disease-modifying therapy for Parkinson’s disease; however, promising new agents have advanced into clinical trials.


Biomedicines ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 197 ◽  
Author(s):  
Lisa M. Barnhill ◽  
Hiromi Murata ◽  
Jeff M. Bronstein

Parkinson’s disease is a common neurodegenerative disorder leading to severe disability. The clinical features reflect progressive neuronal loss, especially involving the dopaminergic system. The causes of Parkinson’s disease are slowly being uncovered and include both genetic and environmental insults. Zebrafish have been a valuable tool in modeling various aspects of human disease. Here, we review studies utilizing zebrafish to investigate both genetic and toxin causes of Parkinson’s disease. They have provided important insights into disease mechanisms and will be of great value in the search for disease-modifying therapies.


Biomolecules ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 912 ◽  
Author(s):  
Alexia Polissidis ◽  
Lilian Petropoulou-Vathi ◽  
Modestos Nakos-Bimpos ◽  
Hardy J. Rideout

Biomarkers and disease-modifying therapies are both urgent unmet medical needs in the treatment of Parkinson’s disease (PD) and must be developed concurrently because of their interdependent relationship: biomarkers for the early detection of disease (i.e., prior to overt neurodegeneration) are necessary in order for patients to receive maximal therapeutic benefit and vice versa; disease-modifying therapies must become available for patients whose potential for disease diagnosis and prognosis can be predicted with biomarkers. This review provides an overview of the milestones achieved to date in the therapeutic strategy development of disease-modifying therapies and biomarkers for PD, with a focus on the most common and advanced genetically linked targets alpha-synuclein (SNCA), leucine-rich repeat kinase-2 (LRRK2) and glucocerebrosidase (GBA1). Furthermore, we discuss the convergence of the different pathways and the importance of patient stratification and how these advances may apply more broadly to idiopathic PD. The heterogeneity of PD poses a challenge for therapeutic and biomarker development, however, the one gene- one target approach has brought us closer than ever before to an unprecedented number of clinical trials and biomarker advancements.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 1121 ◽  
Author(s):  
Maxime W.C. Rousseaux ◽  
Joshua M. Shulman ◽  
Joseph Jankovic

Parkinson’s disease (PD) is the second most common neurodegenerative disorder after Alzheimer’s disease, affecting over 10 million individuals worldwide. While numerous effective symptomatic treatments are currently available, no curative or disease-modifying therapies exist. An integrated, comprehensive understanding of PD pathogenic mechanisms will likely address this unmet clinical need. Here, we highlight recent progress in PD research with an emphasis on promising translational findings, including (i) advances in our understanding of disease susceptibility, (ii) improved knowledge of cellular dysfunction, and (iii) insights into mechanisms of spread and propagation of PD pathology. We emphasize connections between these previously disparate strands of PD research and the development of an emerging systems-level understanding that will enable the next generation of PD therapeutics.


Sign in / Sign up

Export Citation Format

Share Document