scholarly journals Robust responses of typhoon hazards in northern Japan to global warming climate: cases of landfalling typhoons in 2016

2020 ◽  
Vol 27 (5) ◽  
Author(s):  
Sridhara Nayak ◽  
Tetsuya Takemi
2019 ◽  
Vol 3 (2) ◽  
pp. 221-231 ◽  
Author(s):  
Rebecca Millington ◽  
Peter M. Cox ◽  
Jonathan R. Moore ◽  
Gabriel Yvon-Durocher

Abstract We are in a period of relatively rapid climate change. This poses challenges for individual species and threatens the ecosystem services that humanity relies upon. Temperature is a key stressor. In a warming climate, individual organisms may be able to shift their thermal optima through phenotypic plasticity. However, such plasticity is unlikely to be sufficient over the coming centuries. Resilience to warming will also depend on how fast the distribution of traits that define a species can adapt through other methods, in particular through redistribution of the abundance of variants within the population and through genetic evolution. In this paper, we use a simple theoretical ‘trait diffusion’ model to explore how the resilience of a given species to climate change depends on the initial trait diversity (biodiversity), the trait diffusion rate (mutation rate), and the lifetime of the organism. We estimate theoretical dangerous rates of continuous global warming that would exceed the ability of a species to adapt through trait diffusion, and therefore lead to a collapse in the overall productivity of the species. As the rate of adaptation through intraspecies competition and genetic evolution decreases with species lifetime, we find critical rates of change that also depend fundamentally on lifetime. Dangerous rates of warming vary from 1°C per lifetime (at low trait diffusion rate) to 8°C per lifetime (at high trait diffusion rate). We conclude that rapid climate change is liable to favour short-lived organisms (e.g. microbes) rather than longer-lived organisms (e.g. trees).


2018 ◽  
Vol 31 (12) ◽  
pp. 4791-4806 ◽  
Author(s):  
Qianzi Yang ◽  
Yingying Zhao ◽  
Qin Wen ◽  
Jie Yao ◽  
Haijun Yang

The Bjerknes compensation (BJC) under global warming is studied using a simple box model and a coupled Earth system model. The BJC states the out-of-phase changes in the meridional atmosphere and ocean heat transports. Results suggest that the BJC can occur during the transient period of global warming. During the transient period, the sea ice melting in the high latitudes can cause a significant weakening of the Atlantic meridional overturning circulation (AMOC), resulting in a cooling in the North Atlantic. The meridional contrast of sea surface temperature would be enhanced, and this can eventually enhance the Hadley cell and storm-track activities in the Northern Hemisphere. Accompanied by changes in both ocean and atmosphere circulations, the northward ocean heat transport in the Atlantic is decreased while the northward atmosphere heat transport is increased, and the BJC occurs in the Northern Hemisphere. Once the freshwater influx into the North Atlantic Ocean stops, or the ocean even loses freshwater because of strong heating in the high latitudes, the AMOC would recover. Both the atmosphere and ocean heat transports would be enhanced, and they can eventually recover to the state of the control run, leading to the BJC to become invalid. The above processes are clearly demonstrated in the coupled model CO2 experiment. Since it is difficult to separate the freshwater effect from the heating effect in the coupled model, a simple box model is used to understand the BJC mechanism and freshwater’s role under global warming. In a warming climate, the freshwater flux into the ocean can cool the global surface temperature, mitigating the temperature rise. Box model experiments indicate clearly that it is the freshwater flux into the North Atlantic that causes out-of-phase changes in the atmosphere and ocean heat transports, which eventually plays a stabilizing role in global climate change.


2019 ◽  
Vol 25 (4) ◽  
pp. 189-190
Author(s):  
Kent E. Pinkerton ◽  
Emily Felt ◽  
Heather E. Riden

Abstract. A warming climate has been linked to an increase in the frequency and severity of extreme weather events, including heat and cold waves, extreme precipitation, and wildfires. This increase in extreme weather results in increased risks to the health and safety of farmworkers. Keywords: Climate change, Extreme weather, Farmworkers, Global warming, Health and safety.


2018 ◽  
Vol 31 (23) ◽  
pp. 9605-9623 ◽  
Author(s):  
Qin Wen ◽  
Jie Yao ◽  
Kristofer Döös ◽  
Haijun Yang

The global temperature changes under global warming result from two effects: one is the pure radiative heating effect caused by a change in greenhouse gases, and the other is the freshwater effect related to changes in precipitation, evaporation, and sea ice. The two effects are separated in a coupled climate model through sensitivity experiments in this study. It is indicated that freshwater change has a significant cooling effect that can mitigate the global surface warming by as much as ~30%. Two significant regional cooling centers occur: one in the subpolar Atlantic and one in the Southern Ocean. The subpolar Atlantic cooling, also known as the “warming hole,” is triggered by sea ice melting and the southward cold-water advection from the Arctic Ocean, and is sustained by the weakened Atlantic meridional overturning circulation. The Southern Ocean surface cooling is triggered by sea ice melting along the Antarctic and is maintained by the enhanced northward Ekman flow. In these two regions, the effect of freshwater flux change dominates over that of radiation flux change, controlling the sea surface temperature change in the warming climate. The freshwater flux change also results in the Bjerknes compensation, with the atmosphere heat transport change compensating the ocean heat transport change by about 80% during the transient stage of global warming. In terms of global temperature and Earth’s energy balance, the freshwater change plays a stabilizing role in a warming climate.


Sign in / Sign up

Export Citation Format

Share Document