A new Rabotnov fractional‐exponential function‐based fractional derivative for diffusion equation under external force

Author(s):  
Sunil Kumar ◽  
Kottakkaran Sooppy Nisar ◽  
Ranbir Kumar ◽  
Carlo Cattani ◽  
Bessem Samet
Entropy ◽  
2021 ◽  
Vol 23 (2) ◽  
pp. 211
Author(s):  
Garland Culbreth ◽  
Mauro Bologna ◽  
Bruce J. West ◽  
Paolo Grigolini

We study two forms of anomalous diffusion, one equivalent to replacing the ordinary time derivative of the standard diffusion equation with the Caputo fractional derivative, and the other equivalent to replacing the time independent diffusion coefficient of the standard diffusion equation with a monotonic time dependence. We discuss the joint use of these prescriptions, with a phenomenological method and a theoretical projection method, leading to two apparently different diffusion equations. We prove that the two diffusion equations are equivalent and design a time series that corresponds to the anomalous diffusion equation proposed. We discuss these results in the framework of the growing interest in fractional derivatives and the emergence of cognition in nature. We conclude that the Caputo fractional derivative is a signature of the connection between cognition and self-organization, a form of cognition emergence different from the other source of anomalous diffusion, which is closely related to quantum coherence. We propose a criterion to detect the action of self-organization even in the presence of significant quantum coherence. We argue that statistical analysis of data using diffusion entropy should help the analysis of physiological processes hosting both forms of deviation from ordinary scaling.


2013 ◽  
Vol 10 (02) ◽  
pp. 1341001 ◽  
Author(s):  
LEEVAN LING ◽  
MASAHIRO YAMAMOTO

We consider the solutions of a space–time fractional diffusion equation on the interval [-1, 1]. The equation is obtained from the standard diffusion equation by replacing the second-order space derivative by a Riemann–Liouville fractional derivative of order between one and two, and the first-order time derivative by a Caputo fractional derivative of order between zero and one. As the fundamental solution of this fractional equation is unknown (if exists), an eigenfunction approach is applied to obtain approximate fundamental solutions which are then used to solve the space–time fractional diffusion equation with initial and boundary values. Numerical results are presented to demonstrate the effectiveness of the proposed method in long time simulations.


Author(s):  
M. Hosseininia ◽  
M. H. Heydari ◽  
Z. Avazzadeh ◽  
F. M. Maalek Ghaini

AbstractThis article studies a numerical scheme for solving two-dimensional variable-order time fractional nonlinear advection-diffusion equation with variable coefficients, where the variable-order fractional derivative is in the Caputo type. The main idea is expanding the solution in terms of the 2D Legendre wavelets (2D LWs) where the variable-order time fractional derivative is discretized. We describe the method using the matrix operators and then implement it for solving various types of fractional advection-diffusion equations. The experimental results show the computational efficiency of the new approach.


2016 ◽  
Vol 20 (suppl. 3) ◽  
pp. 695-699 ◽  
Author(s):  
Sheng-Ping Yan ◽  
Wei-Ping Zhong ◽  
Xiao-Jun Yang

In this paper, we suggest the series expansion method for finding the series solution for the time-fractional diffusion equation involving Caputo fractional derivative.


2019 ◽  
Vol 3 (2) ◽  
pp. 14 ◽  
Author(s):  
Ndolane Sene ◽  
Aliou Niang Fall

In this paper, the approximate solutions of the fractional diffusion equations described by the fractional derivative operator were investigated. The homotopy perturbation Laplace transform method of getting the approximate solution was proposed. The Caputo generalized fractional derivative was used. The effects of the orders α and ρ in the diffusion processes was addressed. The graphical representations of the approximate solutions of the fractional diffusion equation and the fractional diffusion-reaction equation both described by the Caputo generalized fractional derivative were provided.


2020 ◽  
Vol 34 (27) ◽  
pp. 2050289
Author(s):  
Yiying Feng ◽  
Jiangen Liu

In view of the generalization of Miller–Ross kernel in the sense of Riemann–Liouville type, we propose the new definitions of the general fractional integral (GFI) and general fractional derivative (GFD) to discuss the anomalous diffusion equation, which is distinct from those classic calculus operators. The obtained analytical solution of the application described in the graph is effective and accurate making the use of Laplace transform.


Sign in / Sign up

Export Citation Format

Share Document