scholarly journals Determining the nonlinearity in an acoustic wave equation

Author(s):  
Barbara Kaltenbacher ◽  
William Rundell
Geophysics ◽  
2021 ◽  
pp. 1-58
Author(s):  
Hongwei Liu ◽  
Yi Luo

We present a concise time-domain wave equation to accurately simulate wave propagation in visco-acoustic media. The central idea behind this work is to dismiss the negative frequency components from a time-domain signal by converting the signal to its analytic format. The negative frequency components of any analytic signal are always zero, meaning we can construct the visco-acoustic wave equation to honor the relaxation property of the media for positive frequencies only. The newly proposed complex-valued wave equation (CWE) represents the wavefield with its analytic signal, whose real part is the desired physical wavefield, while the imaginary part is the Hilbert transform of the real component. Specifically, this CWE is accurate for both weak and strong attenuating media in terms of both dissipation and dispersion and the attenuation is precisely linear with respect to the frequencies. Besides, the CWE is easy and flexible to model dispersion-only, dissipation-only or dispersion-plus-dissipation seismic waves. We have verified these CWEs by comparing the results with analytical solutions, and achieved nearly perfect matching. Except for the homogeneous Q media, we have also extended the CWEs to heterogeneous media. The results of the CWEs for heterogeneous Q media are consistent with those computed from the nonstationary operator based Fourier Integral method and from the Standard Linear Solid (SLS) equations.


2014 ◽  
Vol 962-965 ◽  
pp. 2984-2987
Author(s):  
Jia Jia Yang ◽  
Bing Shou He ◽  
Ting Chen

Based on two-way acoustic wave equation, we present a method for computing angle-domain common-image gathers for reverse time migration. The method calculates the propagation direction of source wave-fields and receiver wave-fields according to expression of energy flow density vectors (Poynting vectors) of acoustic wave equation in space-time domain to obtain the reflection angle, then apply the normalized cross-correlation imaging condition to achieve the angle-domain common-image gathers. The angle gathers obtained can be used for migration velocity analysis, AVA analysis and so on. Numerical examples and real data examples demonstrate the effectiveness of this method.


Sign in / Sign up

Export Citation Format

Share Document