A scanning phased array based on a polarization reconfigurable antenna with compact aperture size

Author(s):  
Ting‐Yan Liu ◽  
Jeen‐Sheen Row
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
ByungKuon Ahn ◽  
In-June Hwang ◽  
Kwang-Seok Kim ◽  
Soo-Chang Chae ◽  
Jong-Won Yu ◽  
...  

AbstractThis paper presents a wide-angle scanning phased array antenna using high gain pattern reconfigurable antenna (PRA) elements. Using PRA elements is an attractive solution for wide-angle scanning phased array antennas because the scanning range can be divided into several subspaces. To achieve the desired scanning performance, some characteristics of the PRA element such as the number of switching modes, tilt angle, and maximum half-power beamwidth (HPBW) are required. We analyzed the required characteristics of the PRA element according to the target scanning range and element spacing, and presented a PRA element design guideline for phased array antennas. In accordance with the guideline, the scanning range was set as ±70° and a high gain PRA element with three reconfigurable patterns was used to compose an 8x1 array antenna with 0.9 λ0 spacing. After analyzing whether the active element patterns meet the guideline, the array antenna was fabricated and measured to demonstrate the scanning performance. The fabricated array can scan its beam from -70° to 70° by dividing the scanning range into three subspaces. It shows that even if the array antenna has large element spacing, the desired scanning performance can be obtained using the elements designed under the guideline.


2017 ◽  
Vol E100.B (1) ◽  
pp. 148-157
Author(s):  
Takashi MARUYAMA ◽  
Takashi UESAKA ◽  
Satoshi YAMAGUCHI ◽  
Masataka OTSUKA ◽  
Hiroaki MIYASHITA

2018 ◽  
Vol 7 (4) ◽  
pp. 2628
Author(s):  
G. NagaPavani ◽  
Ch. Lakshmi Prasanna ◽  
Dr. N.N. Sastry

For phased array applications covering ultra wide bandwidth, it is necessary to restrict the size of the aperture to less than λ/2 at highest frequency of operation. For 6-18 GHz coverage, an aperture size of less than 9.76mm is required for scanning to ±450 without appearance of grating lobes and occurrence of element pattern nulls over the band. Meeting this requirement a printed tapered slot antenna has been designed with the above aperture size. Detailed parametric studies have been carried out over 6-18 GHz and dimensions have been opti-mized for return loss. The design has been carried out with HFSS software. A return loss of less than -7.5dB across 5.6 - 20 GHz has been obtained for a single antenna. Also satisfactory radiation patterns have been obtained. 


Author(s):  
Vadim Romanuke

Background. For radar systems, the beam pattern of a uniform linear array (ULA) is synthesized to ensure signal selectivity by direction. A specific ULA sidelobe is cancelled by rescaling the beam weights. In particular, this is done by increasing the number of sensors and shortening the scanning step. However, a noticeable limitation is a loss of the transmitted power. Therefore, the problem is to optimally balance the number of sensors versus effective ULA sidelobe cancellation. Objective. In order to ensure multiple direction interference suppression, the goal is to find an optimal number of ULA radar sensors for the beam pattern synthesis. The criterion is to determine such a minimum of these sensors at which mainlobes towards useful signal directions are evened as much as possible. Methods. To achieve the said goal, the ULA sidelobe cancellation is simulated. The simulation is configured and carried out by using MATLAB® R2020b Phased Array System ToolboxTM functions based on an algorithm of the sidelobe cancellation. Results. By increasing the number of ULA sensors, the beam pattern lobes are not only thinned but also change in their power. In particular, the interference direction sidelobes become relatively stronger. The number of sensors is limited by the three influencing factors: the thinned-array curse transmitted power loss, the aperture size, and the sidelobes intensification. Conclusions. An optimal number of ULA radar sensors for the beam pattern synthesis can be found when the scanning step is equal to the least distance between adjacent interference directions. At the start, the number of sensors is set at the number of useful signal directions. If the mainlobes towards useful signal directions are not evened enough, the set of interference directions is corrected. Keywords: radar phased array; beam pattern; interference direction; sidelobe cancellation; aperture size.


Sign in / Sign up

Export Citation Format

Share Document