Structure‐function Relationships of Human Milk Oligosaccharides on the Intestinal Epithelial Transcriptome in Caco‐2 Cells and a Murine Model of Necrotizing Enterocolitis

2021 ◽  
pp. 2100893
Author(s):  
Richard Y. Wu ◽  
Bo Li ◽  
Rachael G. Horne ◽  
Abdalla Ahmed ◽  
Dorothy Lee ◽  
...  
2021 ◽  
Author(s):  
Chunli Kong ◽  
Martin Beukema ◽  
Min Wang ◽  
Bart J. de Haan ◽  
Paul de Vos

Human milk oligosaccharides 2′-FL and pectins inhibited pathogen adhesion through modulating glycosylation and inflammatory genes in intestinal epithelial cells.


2010 ◽  
Vol 24 (S1) ◽  
Author(s):  
Lars Bode ◽  
Kerstin Goth ◽  
Yigit Guner ◽  
Caroline Nissan ◽  
Monica Zherebtsov ◽  
...  

Nutrients ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 3052
Author(s):  
Lila S. Nolan ◽  
Jamie M. Rimer ◽  
Misty Good

Preterm infants are a vulnerable population at risk of intestinal dysbiosis. The newborn microbiome is dominated by Bifidobacterium species, though abnormal microbial colonization can occur by exogenous factors such as mode of delivery, formula feeding, and exposure to antibiotics. Therefore, preterm infants are predisposed to sepsis and necrotizing enterocolitis (NEC), a fatal gastrointestinal disorder, due to an impaired intestinal barrier, immature immunity, and a dysbiotic gut microbiome. Properties of human milk serve as protection in the prevention of NEC. Human milk oligosaccharides (HMOs) and the microbiome of breast milk are immunomodulatory components that provide intestinal homeostasis through regulation of the microbiome and protection of the intestinal barrier. Enteral probiotic supplements have been trialed to evaluate their impact on establishing intestinal homeostasis. Here, we review the protective role of HMOs, probiotics, and synbiotic combinations in protecting a vulnerable population from the pathogenic features associated with necrotizing enterocolitis.


2020 ◽  
Vol 150 (8) ◽  
pp. 2077-2088 ◽  
Author(s):  
Chunli Kong ◽  
Lianghui Cheng ◽  
Guido Krenning ◽  
Jolien Fledderus ◽  
Bart J de Haan ◽  
...  

ABSTRACT Background The intestinal epithelial cells, food molecules, and gut microbiota are continuously exposed to intestinal peristaltic shear force. Shear force may impact the crosstalk of human milk oligosaccharides (hMOs) with commensal bacteria and intestinal epithelial cells. Objectives We investigated how hMOs combined with intestinal peristaltic shear force impact intestinal epithelial cells and crosstalk with a commensal bacterium. Methods We applied the Ibidi system to mimic intestinal peristaltic shear force. Caco-2 cells were exposed to a shear force (5 dynes/cm2) for 3 d, and then stimulated with the hMOs, 2′-fucosyllactose (2′-FL), 3-FL, and lacto-N-triose II (LNT2). In separate experiments, Lactobacillus plantarumWCFS1 adhesion to Caco-2 cells was studied with the same hMOs and shear force. Effects were tested on gene expression of glycocalyx-related molecules (glypican 1 [GPC1], hyaluronan synthase 1 [HAS1], HAS2, HAS3, exostosin glycosyltransferase 1 [EXT1], EXT2), defensin β-1 (DEFB1), and tight junction (tight junction protein 1 [TJP1], claudin 3 [CLDN3]) in Caco-2 cells. Protein expression of tight junctions was also quantified. Results Shear force dramatically decreased gene expression of the main enzymes for making glycosaminoglycan side chains (HAS3 by 43.3% and EXT1 by 68.7%) (P <0.01), but did not affect GPC1 which is the gene responsible for the synthesis of glypican 1 which is a major protein backbone of glycocalyx. Expression of DEFB1, TJP1, and CLDN3 genes was decreased 60.0–94.9% by shear force (P <0.001). The presence of L. plantarumWCFS1 increased GPC1, HAS2, HAS3, and ZO-1 expression by 1.78- to 3.34-fold (P <0.05). Under shear force, all hMOs significantly stimulated DEFB1 and ZO-1, whereas only 3-FL and LNT2 enhanced L. plantarumWCFS1 adhesion by 1.85- to 1.90-fold (P <0.01). Conclusions 3-FL and LNT2 support the crosstalk between the commensal bacterium L. plantarumWCFS1 and Caco-2 intestinal epithelial cells, and shear force can increase the modulating effects of hMOs.


Sign in / Sign up

Export Citation Format

Share Document