scholarly journals New basis functions for the electromagnetic solution of arbitrarily-shaped, three dimensional conducting bodies using method of moments

2008 ◽  
Vol 50 (4) ◽  
pp. 1121-1124 ◽  
Author(s):  
Anne I. Mackenzie ◽  
Michael E. Baginski ◽  
Sadasiva M. Rao
1990 ◽  
Vol 68 (6) ◽  
pp. 459-468 ◽  
Author(s):  
H. Moheb ◽  
L. Shafai

An efficient numerical technique based on a Fourier expansion of the surface current is developed to study the electromagnetic scattering from three-dimensional geometries of arbitrary shape. In this method, the discrete domain representing the structure surface is geometrically represented by two orthogonal contours. One is selected along the intersection of the x–z plane with the object's surface, and the other along the corresponding one in the x–y plane. Entire domain basis functions are selected for the current component in the x–y plane, and subdomain linear basis functions are used to represent the other current component. The method of moments is used to solve the problem numerically. The technique is then applied to study the scattering from discrete surfaces such as squares and rectangles, to compare them with those of the coordinate-transformation technique developed earlier. The behavior of the solutions with the number of modes is investigated to determine their coupling.


2015 ◽  
Vol 9 (2) ◽  
pp. 463-468 ◽  
Author(s):  
Reza Bayderkhani ◽  
Keyvan Forooraghi ◽  
Emilio Arnieri ◽  
Bijan Abbasi-Arand ◽  
Bal S. Virdee

This paper presents a very fast and highly efficient full-wave hybrid method for analyzing an integrated dielectric lens antenna (ILA) fed by multilayered substrate-integrated waveguide (SIW) slot antenna/array. The feeding antenna structure is modeled as a stacked parallel-plate waveguide with metallic posts, coupling, and radiating slots. Physical optics method in conjunction with three-dimensional ray tracing technique is employed to analyze the effect of the dielectric lens on the SIW feeding slots. Fields in the SIW structure are computed by considering the Dyadic Green's function expressed as an expansion of vectorial cylindrical eigenfunctions and taking into account scattering at the conducting posts. Slots are modeled with equivalent magnetic currents expressed as a sum of domain basis functions. By imposing continuity of the tangential components of the fields an integral equation is obtained that is solved with the application of method-of-moments. In order to validate the proposed technique, a hemispherical ILA fed by a double-layered SIW cavity which is backed with slot antenna is analyzed. Excellent agreement is obtained with HFSS software together with significant improvement in computational time and memory requirements.


Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1316
Author(s):  
Carlos-Ivan Paez-Rueda ◽  
Arturo Fajardo ◽  
Manuel Pérez ◽  
Gabriel Perilla

This paper proposes new closed expressions of self-impedance using the Method of Moments with the Point Matching Procedure and piecewise constant and linear basis functions in different configurations, which allow saving computing time for the solution of wire antennas with complex geometries. The new expressions have complexity O(1) with well-defined theoretical bound errors. They were compared with an adaptive numerical integration. We obtain an accuracy between 7 and 16 digits depending on the chosen basis function and segmentation used. Besides, the computing time involved in the calculation of the self-impedance terms was evaluated and compared with the time required by the adaptative quadrature integration solution of the same problem. Expressions have a run-time bounded between 50 and 200 times faster than an adaptive numerical integration assuming full computation of all constant of the expressions.


Processes ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 9
Author(s):  
Chao Yu ◽  
Xiangyao Xue ◽  
Kui Shi ◽  
Mingzhen Shao

This paper presents a method for optimizing wavy plate-fin heat exchangers accurately and efficiently. It combines CFD simulation, Radical Basis Functions (RBF) with multi-objective optimization to improve the performance. The optimization of the Colburn factor j and the friction coefficient f is regarded as a multi-objective optimization problem, due to the existence of two contradictory goals. The approximation model was obtained by Radical Basis Functions, and the shape of the heat exchanger was optimized by multi-objective genetic algorithm (MOGA). The optimization results showed that j increased by 17.62% and f decreased by 20.76%, indicating that the heat exchange efficiency was significantly enhanced and the fluid structure resistance reduced. Then, from the aspects of field synergy and tubulence energy, the performance advantage of the optimized structure was further confirmed.


Sign in / Sign up

Export Citation Format

Share Document