Design of high-gain low-profile resonant cavity antenna using metamaterial superstrate

2010 ◽  
Vol 52 (8) ◽  
pp. 1855-1858 ◽  
Author(s):  
Gang Zhao ◽  
Yong-Chang Jiao ◽  
Fan Zhang ◽  
Fu-Shun Zhang
2019 ◽  
Vol 18 (11) ◽  
pp. 2394-2398 ◽  
Author(s):  
Julio Gonzalez Marin ◽  
Affan A. Baba ◽  
Daniel Lopez Cuenca ◽  
Jan Hesselbarth ◽  
Raheel M. Hashmi ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4796
Author(s):  
Basem Aqlan ◽  
Mohamed Himdi ◽  
Hamsakutty Vettikalladi ◽  
Laurent Le-Coq

This communication presents a low-profile fully metallic high gain circularly polarized resonant cavity antenna, with a novel single-layer metasurface as superstrate operating at 300 GHz. The unit cell of the metallic metasurface layer consists of perforated grids of hexagonal and octagonal-shaped radiating apertures. The metasurface superstrate layer acts as a polarization convertor from linear-to-circular, which provides left-handed circularly polarized (LHCP) radiation. For simplicity and less design difficulty, a low cost laser cutting brass technology is proposed to design the antenna at sub-terahertz. The proposed circularly polarized resonant cavity antenna prototype has a low-profile planar metallic structure of volume 2.6λ0×2.6λ0×1.24λ0. Experimental results validate the design concept. The antenna yields a measured LHCP gain of 16.2 dBic with a directivity of 16.7 dBic at 302 GHz. This proposed circularly polarized resonant cavity antenna finds potential application in 6G sub-terahertz wireless communications.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hossein Eskandari ◽  
Juan Luis Albadalejo-Lijarcio ◽  
Oskar Zetterstrom ◽  
Tomáš Tyc ◽  
Oscar Quevedo-Teruel

AbstractConformal transformation optics is employed to enhance an H-plane horn’s directivity by designing a graded-index all-dielectric lens. The transformation is applied so that the phase error at the aperture is gradually eliminated inside the lens, leading to a low-profile high-gain lens antenna. The physical space shape is modified such that singular index values are avoided, and the optical path inside the lens is rescaled to eliminate superluminal regions. A prototype of the lens is fabricated using three-dimensional printing. The measurement results show that the realized gain of an H-plane horn antenna can be improved by 1.5–2.4 dB compared to a reference H-plane horn.


2021 ◽  
Author(s):  
Min Wang ◽  
Jin Zhang ◽  
Peng Ye ◽  
Zhengchuan Chen
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document