scholarly journals Experimental Realization of Sub-THz Circularly Polarized Antenna Based on Metasurface Superstrate at 300 GHz

Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4796
Author(s):  
Basem Aqlan ◽  
Mohamed Himdi ◽  
Hamsakutty Vettikalladi ◽  
Laurent Le-Coq

This communication presents a low-profile fully metallic high gain circularly polarized resonant cavity antenna, with a novel single-layer metasurface as superstrate operating at 300 GHz. The unit cell of the metallic metasurface layer consists of perforated grids of hexagonal and octagonal-shaped radiating apertures. The metasurface superstrate layer acts as a polarization convertor from linear-to-circular, which provides left-handed circularly polarized (LHCP) radiation. For simplicity and less design difficulty, a low cost laser cutting brass technology is proposed to design the antenna at sub-terahertz. The proposed circularly polarized resonant cavity antenna prototype has a low-profile planar metallic structure of volume 2.6λ0×2.6λ0×1.24λ0. Experimental results validate the design concept. The antenna yields a measured LHCP gain of 16.2 dBic with a directivity of 16.7 dBic at 302 GHz. This proposed circularly polarized resonant cavity antenna finds potential application in 6G sub-terahertz wireless communications.

Frequenz ◽  
2017 ◽  
Vol 71 (5-6) ◽  
Author(s):  
Yaqiang Zhuang ◽  
Guangming Wang ◽  
Haipeng Li ◽  
Wenlong Guo

AbstractA high-gain lens antenna employing single-layer focusing metasurface (MS) is proposed in this article. The single-layer element achieves a 360° transmission phase range with a transmission magnitude better than 0.9. And the focusing MS consists of 169 elements was designed by utilizing the technique of varying rotation angle to compensate the phase delay. Thus, a lens antenna is constructed by placing a circularly polarized (CP) patch antenna at the focal point of the MS. The fabricated lens antenna demonstrates a good performance of 4.6 % 3-dB axial ratio bandwidth and 6 % 1-dB gain bandwidth, respectively. Moreover, the maximum gain is 18.3 dBic at 15 GHz, which is enhanced by 11.4 dBic compared with the patch antenna. Due to the single-layer structure, this design has a low profile and easy fabrication process compared with the conventional designs, making it an attractive alternative to compact high-gain antenna.


2010 ◽  
Vol 52 (8) ◽  
pp. 1855-1858 ◽  
Author(s):  
Gang Zhao ◽  
Yong-Chang Jiao ◽  
Fan Zhang ◽  
Fu-Shun Zhang

2019 ◽  
Vol 18 (11) ◽  
pp. 2394-2398 ◽  
Author(s):  
Julio Gonzalez Marin ◽  
Affan A. Baba ◽  
Daniel Lopez Cuenca ◽  
Jan Hesselbarth ◽  
Raheel M. Hashmi ◽  
...  

IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 13376-13384 ◽  
Author(s):  
Yazan Al-Alem ◽  
Ahmed A. Kishk
Keyword(s):  
Low Cost ◽  
60 Ghz ◽  

Sign in / Sign up

Export Citation Format

Share Document