scholarly journals Body region localization in whole-body low-dose CT images of PET/CT scans using virtual landmarks

2019 ◽  
Vol 46 (3) ◽  
pp. 1286-1299 ◽  
Author(s):  
Peirui Bai ◽  
Jayaram K. Udupa ◽  
Yubing Tong ◽  
ShiPeng Xie ◽  
Drew A. Torigian
2017 ◽  
Vol 2017 ◽  
pp. 1-7
Author(s):  
Nadia Withofs ◽  
François Cousin ◽  
Bernard De Prijck ◽  
Christophe Bonnet ◽  
Roland Hustinx ◽  
...  

An observational study was set up to assess the feasibility of [F18]FPRGD2 PET/CT for imaging patients with multiple myeloma (MM) and to compare its detection rate with low dose CT alone and combined [F18]NaF/[F18]FDG PET/CT images. Four patients (2 newly diagnosed patients and 2 with relapsed MM) were included and underwent whole-body PET/CT after injection of [F18]FPRGD2. The obtained images were compared with results of low dose CT and already available results of a combined [F18]NaF/[F18]FDG PET/CT. In total, 81 focal lesions (FLs) were detected with PET/CT and an underlying bone destruction or fracture was seen in 72 (89%) or 8 (10%) FLs, respectively. Fewer FLs (54%) were detected by [F18]FPRGD2 PET/CT compared to low dose CT (98%) or [F18]NaF/[F18]FDG PET/CT (70%) and all FLs detected with [F18]FPRGD2 PET were associated with an underlying bone lesion. In one newly diagnosed patient, more [F18]FPRGD2 positive lesions were seen than [F18]NaF/[F18]FDG positive lesions. This study suggests that [F18]FPRGD2 PET/CT might be less useful for the detection of myeloma lesions in patients with advanced disease as all FLs with [F18]FPRGD2 uptake were already detected with CT alone.


Author(s):  
Wenchao Du ◽  
Hu Chen ◽  
Hongyu Yang ◽  
Yi Zhang

AbstractGenerative adversarial network (GAN) has been applied for low-dose CT images to predict normal-dose CT images. However, the undesired artifacts and details bring uncertainty to the clinical diagnosis. In order to improve the visual quality while suppressing the noise, in this paper, we mainly studied the two key components of deep learning based low-dose CT (LDCT) restoration models—network architecture and adversarial loss, and proposed a disentangled noise suppression method based on GAN (DNSGAN) for LDCT. Specifically, a generator network, which contains the noise suppression and structure recovery modules, is proposed. Furthermore, a multi-scaled relativistic adversarial loss is introduced to preserve the finer structures of generated images. Experiments on simulated and real LDCT datasets show that the proposed method can effectively remove noise while recovering finer details and provide better visual perception than other state-of-the-art methods.


2013 ◽  
Vol 51 (4) ◽  
pp. 205-206 ◽  
Author(s):  
James R. Jett
Keyword(s):  
Low Dose ◽  
Ct Scans ◽  

2021 ◽  
Author(s):  
Babak Haghighi ◽  
Hannah Horng ◽  
Peter B Noël ◽  
Eric Cohen ◽  
Lauren Pantalone ◽  
...  

Abstract Rationale: High-throughput extraction of radiomic features from low-dose CT scans can characterize the heterogeneity of the lung parenchyma and potentially aid in identifying subpopulations that may have higher risk of lung diseases, such as COPD, and lung cancer due to inflammation or obstruction of the airways. We aim to determine the feasibility a lung radiomics phenotyping approach in a lung cancer screening cohort, while quantifying the effect of different CT reconstruction algorithms on phenotype robustness. Methods: We identified low-dose CT scans (n = 308) acquired with Siemens Healthineers scanners from patients who completed low-dose CT within our lung cancer screening program between 2015-2018 and had two different sets of image reconstructions kernel available (i.e., medium (I30f), sharp (I50f)) for the same acquisition. Following segmentation of the lung field, a total of 26 radiomic features were extracted from the entire 3D lung-field using a previously validated fully-automated lattice-based software pipeline, adapted for low-dose CT scans. The features extracted included gray-level histogram, co-occurrence, and run-length descriptors. Each feature was averaged for each scan within a range of lattice window sizes (W) ranging from 4-20mm. The extracted imaging features from both datasets were harmonized to correct for differences in image acquisition parameters. Subsequently, unsupervised hierarchal clustering was applied on the extracted features to identify distinct phenotypic patterns of the lung parenchyma, where consensus clustering was used to identify the optimal number of clusters (K = 2). Differences between? phenotypes for demographic and clinical covariates including sex, age, BMI, pack-years of smoking, Lung-RADS and cancer diagnosis were assessed for each phenotype cluster, and then compared across clusters for the two different CT reconstruction algorithms using the cluster entanglement metric, where a lower entanglement coefficient corresponds to good cluster alignment. Furthermore, an independent set of low-dose CT scans (n = 88) from patients with available pulmonary function data on lung obstruction were analyzed using the identified optimal clusters to assess associations to lung obstruction and validate the lung phenotyping paradigm. Results: Heatmaps generated by radiomic features identified two distinct lung parenchymal phenotype patterns across different feature extraction window sizes, for both reconstruction algorithms (P < 0.05 with K = 2). Associations of radiomic-based clusters with clinical covariates showed significant difference for BMI and pack-years of smoking (P < 0.05) for both reconstruction kernels. Radiomic phenotype patterns where similar across the two reconstructed kernels, specifically when smaller window sizes (W=4 and 8mm) were used for radiomic feature extraction, as deemed by their entanglement coefficient. Validation of clustering approaches using cluster mapping for the independent sample with lung obstruction also showed two statistically significant phenotypes (P < 0.05) with significant difference for BMI and smoking pack-years.ConclusionsRadiomic analysis can be used to characterize lung parenchymal phenotypes from low-dose CT scans, which appear reproducible for different reconstruction kernels. Further work should seek to evaluate the effect of additional CT acquisition parameters and validate these phenotypes in characterizing lung cancer screening populations, to potentially better stratify disease patterns and cancer risk.


Life ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1320
Author(s):  
Antonio Pierro ◽  
Alessandro Posa ◽  
Costanzo Astore ◽  
Mariacarmela Sciandra ◽  
Alessandro Tanzilli ◽  
...  

Multiple myeloma is a hematological malignancy of plasma cells usually detected due to various bone abnormalities on imaging and rare extraosseous abnormalities. The traditional approach for disease detection was based on plain radiographs, showing typical lytic lesions. Still, this technique has many limitations in terms of diagnosis and assessment of response to treatment. The new approach to assess osteolytic lesions in patients newly diagnosed with multiple myeloma is based on total-body low-dose CT. The purpose of this paper is to suggest a guide for radiologists in performing and evaluating a total-body low-dose CT in patients with multiple myeloma, both newly-diagnosed and in follow-up (pre and post treatment).


Author(s):  
Mateus Baltazar de Almeida ◽  
Luis F. Alves Pereira ◽  
Tsang Ing Ren ◽  
George D. C. Cavalcanti ◽  
Jan Sijbers

2021 ◽  
Vol 216 (3) ◽  
pp. 742-751
Author(s):  
Vassilis Koutoulidis ◽  
Evangelos Terpos ◽  
Ioanna Klapa ◽  
George Cheliotis ◽  
Ioannis Ntanasis-Stathopoulos ◽  
...  

2020 ◽  
Author(s):  
Kenji Hirata ◽  
Osamu Manabe ◽  
Keiichi Magota ◽  
Sho Furuya ◽  
Tohru Shiga ◽  
...  

Abstract Background Radiology reports contribute not only to the particular patient, but also to constructing massive training dataset in the era of artificial intelligence (AI). The maximum standardized uptake value (SUVmax) is often described in daily radiology reports of FDG PET-CT. If SUVmax can be used as an identifier of lesion, that would greatly help AI interpret radiology reports. We aimed to clarify whether the lesion can be localized using SUVmax written in radiology reports.Methods The institutional review board approved this retrospective study. We investigated a total of 112 lesions from 30 FDG PET-CT images acquired with 3 different scanners. SUVmax was calculated from DICOM files based on the latest Quantitative Imaging Biomarkers Alliance (QIBA) publication. The voxels showing the given SUVmax were exhaustively searched in the whole-body images and counted. SUVmax was provided with 5 different degrees of precision: integer (e.g., 3), 1st decimal places (DP) (3.1), 2nd DP (3.14), 3rd DP (3.142), and 4th DP (3.1416). For instance, when SUVmax=3.14 was given, the voxels with 3.135≤SUVmax<3.145 were extracted. We also evaluated whether local maximum restriction could improve the identifying performance, where only the voxels showing the highest intensity within some neighborhood were considered. We defined that “identical detection” was achieved when only single voxel satisfied the criterion.Results A total of 112 lesions from 30 FDG PET-CT images were investigated. SUVmax ranged from 1.3 to 49.1 (median = 5.6, IQR = 5.2). Generally, when larger and more precise SUVmax values were given, fewer voxels satisfied the criterion. The local maximum restriction was very effective. When SUVmax was determined to 4 decimal places (e.g., 3.1416) and the local maximum restriction was applied, identical detection was achieved in 33.3% (lesions with SUVmax<2), 79.5% (2≤SUVmax<5), and 97.8% (5≤SUVmax) of lesions.Conclusions SUVmax of FDG PET-CT can be used as an identifier to localize the lesion if precise SUVmax is provided and local maximum restriction was applied, although the lesions showing SUVmax<2 were difficult to identify. The proposed method may have potential to make use of radiology reports retrospectively for constructing training datasets for AI.


Sign in / Sign up

Export Citation Format

Share Document