In vitro and in vivo effects of a multimerized ?s1-casein enhancer on whey acidic protein gene promoter activity

2003 ◽  
Vol 65 (3) ◽  
pp. 262-268 ◽  
Author(s):  
Thais Pantano ◽  
Sylvie Rival-Gervier ◽  
Sonia Prince ◽  
Celeste Menck-Le Bourhis ◽  
Caroline Maeder ◽  
...  

2001 ◽  
Vol 359 (3) ◽  
pp. 557-565 ◽  
Author(s):  
Benjamin MILLOT ◽  
Marie-Louise FONTAINE ◽  
Dominique THEPOT ◽  
Eve DEVINOY

The aim of the present study was to identify the functional domains of the upstream region of the rabbit whey acidic protein (WAP) gene, which has been used with considerable efficacy to target the expression of several foreign genes to the mammary gland. We have shown that this region exhibits three sites hypersensitive to DNase I digestion in the lactating mammary gland, and that all three sites harbour elements which can bind to Stat5 in vitro in bandshift assays. However, not all hypersensitive regions are detected at all stages from pregnancy to weaning, and the level of activated Stat5 detected in the rabbit mammary gland is low except during lactation. We have studied the role of the distal site, which is only detected during lactation, in further detail. It is located within a 849bp region that is required to induce a strong expression of the chloramphenicol acetyltransferase reporter gene in transfected mammary cells. Taken together, these results suggest that this region, centred around a Stat5-binding site and surrounded by a variable chromatin structure during the pregnancy–lactation cycle, may play a key role in regulating the expression of this gene in vivo. Furthermore, this distal region exhibits sequence similarity with a region located around 3kb upstream of the mouse WAP gene. The existence of such a distal region in the mouse WAP gene may explain the differences in expression between 4.1 and 2.1kb mouse WAP constructs.



2004 ◽  
Vol 274 (1) ◽  
pp. 31-44 ◽  
Author(s):  
Naoko Nukumi ◽  
Kayoko Ikeda ◽  
Megumi Osawa ◽  
Tokuko Iwamori ◽  
Kunihiko Naito ◽  
...  


2001 ◽  
Vol 281 (4) ◽  
pp. G947-G956 ◽  
Author(s):  
Pawel R. Kiela ◽  
Eric R. Hines ◽  
James F. Collins ◽  
Fayez K. Ghishan

Short-chain fatty acids, and especially butyrate (NaB), stimulate sodium and water absorption by inducing colonic Na+/H+ exchange (NHE). NaB induces NHE3 activity and protein and mRNA expression both in vivo and in vitro. NaB, as a histone deacetylase (HDAC) inhibitor, regulates gene transcription. We therefore studied whether NaB regulates transcription of the rat NHE3 promoter in transiently transfected Caco-2 cells. NaB (5 mM) strongly stimulated reporter gene activity, and this stimulation was prevented with actinomycin D, indicating transcriptional activation. NaB effects on the NHE3 promoter depended on the activity of Ser/Thr kinases, in particular, protein kinase A (PKA). However, PKA stimulation alone did not have an effect on promoter activity, and it did not act synergistically with NaB. Another HDAC inhibitor, Trichostatin A (TSA), stimulated NHE3 promoter in a Ser/Thr kinase-independent fashion. The putative NaB-responsive elements were localized within −320/−34 bp of the NHE3 promoter. These findings suggest that PKA mediates NaB effects on NHE3 gene transcription and that the mechanism of NaB action is different from that of TSA.



2008 ◽  
Vol 74 (11) ◽  
pp. 3512-3522 ◽  
Author(s):  
Sudesh Pawaria ◽  
Amrita Lama ◽  
Manoj Raje ◽  
Kanak L. Dikshit

ABSTRACT The success of Mycobacterium tuberculosis as one of the dreaded human pathogens lies in its ability to utilize different defense mechanisms in response to the varied environmental challenges during the course of its intracellular infection, latency, and reactivation cycle. Truncated hemoglobins trHbN and trHbO are thought to play pivotal roles in the cellular metabolism of this organism during stress and hypoxia. To delineate the genetic regulation of the M. tuberculosis hemoglobins, transcriptional fusions of the promoters of the glbN and glbO genes with green fluorescent protein were constructed, and their responses were monitored in Mycobacterium smegmatis and M. tuberculosis H37Ra exposed to environmental stresses in vitro and in M. tuberculosis H37Ra after in vivo growth inside macrophages. The glbN promoter activity increased substantially during stationary phase and was nearly 3- to 3.5-fold higher than the activity of the glbO promoter, which remained more or less constant during different growth phases in M. smegmatis, as well as in M. tuberculosis H37Ra. In both mycobacterial hosts, the glbN promoter activity was induced 1.5- to 2-fold by the general nitrosative stress inducer, nitrite, as well as the NO releaser, sodium nitroprusside (SNP). The glbO promoter was more responsive to nitrite than to SNP, although the overall increase in its activity was much less than that of the glbN promoter. Additionally, the glbN promoter remained insensitive to the oxidative stress generated by H2O2, but the glbO promoter activity increased nearly 1.5-fold under similar conditions, suggesting that the trHb gene promoters are regulated differently under nitrosative and oxidative stress conditions. In contrast, transition metal-induced hypoxia enhanced the activity of both the glbN and glbO promoters at all growth phases; the glbO promoter was induced ∼2.3-fold, which was found to be the highest value for this promoter under all the conditions evaluated. Addition of iron along with nickel reversed the induction in both cases. Interestingly, a concentration-dependent decrease in the activity of both trHb gene promoters was observed when the levels of iron in the growth media were depleted by addition of an iron chelator. These results suggested that an iron/heme-containing oxygen sensor is involved in the modulation of the trHb gene promoter activities directly or indirectly in conjunction with other cellular factors. The modes of promoter regulation under different physiological conditions were found to be similar for the trHbs in both M. smegmatis and M. tuberculosis H37Ra, indicating that the promoters might be regulated by components that are common to the two systems. Confocal microscopy of THP-1 macrophages infected with M. tuberculosis carrying the trHb gene promoter fusions showed that there was a significant level of promoter activity during intracellular growth in macrophages. Time course evaluation of the promoter activity after various times up to 48 h by fluorescence-activated cell sorting analysis of the intracellular M. tuberculosis cells indicated that the glbN promoter was active at all time points assessed, whereas the activity of the glbO promoter remained at a steady-state level up to 24 h postinfection and increased ∼2-fold after 48 h of infection. Thus, the overall regulation pattern of the M. tuberculosis trHb gene promoters correlates not only with the stresses that the tubercle bacillus is likely to encounter once it is in the macrophage environment but also with our current knowledge of their functions. The in vivo studies that demonstrated for the first time expression of trHbs during macrophage infection of M. tuberculosis strongly indicate that the hemoglobins are required, and thus important, during the intracellular phase of the bacterial cycle. The present study of transcriptional regulation of M. tuberculosis hemoglobins in vitro under various stress conditions and in vivo after macrophage infection supports the hypothesis that biosynthesis of both trHbs (trHbN and trHbO) in the native host is regulated via the environmental signals that the tubercle bacillus receives during macrophage infection and growth in its human host.



2010 ◽  
Vol 49 (3-4) ◽  
pp. 251-257 ◽  
Author(s):  
Haydar Bagis ◽  
Digdem Aktoprakligil ◽  
Cagatay Gunes ◽  
Sezen Arat ◽  
Tolga Akkoc ◽  
...  




2001 ◽  
Vol 170 (1) ◽  
pp. 91-98 ◽  
Author(s):  
P Fragner ◽  
SL Lee ◽  
S Aratan de Leon

TRH was initially found in the hypothalamus and regulates TSH secretion. TRH is also produced by insulin-containing beta-cells. Endogenous TRH positively regulates glucagon secretion and attenuates pancreatic exocrine secretion. We have previously shown that triiodothyronine (T(3)) down-regulates pre-pro-TRH gene expression in vivo and in vitro. The present study was designed to determine the initial impact of T(3) on rat TRH gene promoter and to compare this effect with that of dexamethasone (Dex). Primary islet cells and neoplastic cells (HIT T-15 and RIN m5F) were transiently transfected with fragments of the 5'-flanking sequence of TRH fused to the luciferase reporter gene. The persistence of high TRH concentrations in fetal islets in culture, probably due to transactivating factors, allowed us to explore how T(3) and Dex regulate the TRH promoter activity in transfected cells and whether the hormone effect is dependent on the cell type considered. TRH gene promoter activity is inhibited by T(3) in primary but not neoplastic cells and stimulated by Dex in both primary and neoplastic cells of islets. These findings validate previous in vivo and in vitro studies and indicate the transcriptional impact of these hormones on TRH gene expression in the pancreatic islets.



1991 ◽  
Vol 5 (11) ◽  
pp. 1624-1632 ◽  
Author(s):  
Wolfgang Doppler ◽  
Andreas Villunger ◽  
Patricia Jennewein ◽  
Karin Brduscha ◽  
Bernd Groner ◽  
...  


1996 ◽  
Vol 36 (5) ◽  
pp. 555-563 ◽  
Author(s):  
M. Massoud ◽  
J. Attal ◽  
D. Thépot ◽  
H. Pointu ◽  
MG Stinnakre ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document