Quantitative measurements of proton spin-lattice (T1) and spin-spin (T2) relaxation times in the mouse brain at 7.0 T

2003 ◽  
Vol 49 (3) ◽  
pp. 576-580 ◽  
Author(s):  
David N. Guilfoyle ◽  
Victor V. Dyakin ◽  
Jacqueline O'Shea ◽  
Gaby S. Pell ◽  
Joseph A. Helpern





Soil Science ◽  
2003 ◽  
Vol 168 (2) ◽  
pp. 128-136 ◽  
Author(s):  
Kaijun Wang ◽  
L. Charles Dickinson ◽  
Elham A. Ghabbour ◽  
Geoffrey Davies ◽  
Baoshan Xing


1989 ◽  
Vol 17 (4_part_1) ◽  
pp. 613-616 ◽  
Author(s):  
G. Allan Johnson ◽  
Robert R. Maronpot

Magnetic resonance imaging (MRI) is a new imaging technique used in clinical diagnosis. This paper describes extension of the technique to basic research applications–specifically detecting and characterizing chemically-induced liver neoplasms and foci of cellular alteration. Two systems have been built that allow spatial microscopic resolution–more than 100,000 x greater than that of earlier efforts. Use of spin-lattice (T1) and spin-spin (T2) relaxation times permits detailed characterization of the tissue.



1979 ◽  
Vol 65 (2) ◽  
pp. 157-162 ◽  
Author(s):  
S. S. Ranade ◽  
Smita Shah ◽  
G. V. Talwalkar

The pulsed nuclear magnetic resonance technique was explored for its potential diagnostic value in human cancer. Measurements of proton spin-lattice relaxation times (T1) of cellular water protons of normal and malignant esophageal tissues showed elevated T, values in the latter. In some cases, tissues which appeared normal on gross examination assumed as uninvolved tissues had T, values higher than the other grossly uninvolved tissues and often closer to the T, of the corresponding tumor tissue. A histopathological study of the assumed uninvolved areas also studied for the T, values was therefore undertaken. A preliminary study demonstrated the presence of malignant cell groups or clusters in some of the uninvolved samples with higher T1 compared to the true uninvolved tissues, which had a normal histological picture and low T, values. This observation has brought out the importance of histopathological studies in addition to relaxation studies to comprehend contributory factors to relaxation. Secondly, it lends support to the thesis of elevated T, values being characteristics of the malignant state.



2003 ◽  
Vol 51 (1) ◽  
pp. 194-199 ◽  
Author(s):  
Sean C.L. Deoni ◽  
Terry M. Peters ◽  
Brian K. Rutt


1978 ◽  
Vol 18 (5) ◽  
pp. 2046-2049 ◽  
Author(s):  
Michael F. Froix ◽  
Arthur J. Epstein ◽  
Joel S. Miller


1979 ◽  
Vol 57 (9) ◽  
pp. 1075-1079 ◽  
Author(s):  
Michael E. Moseley ◽  
Peter Stilbs

Indirect measurements of nitrogen-14 nuclear spin-lattice relaxation times and direct proton coupling constants are presented together with carbon-13 T1 data for a series of alkyl-substituted nucleic acid bases and mixtures thereof in DMSO-d6. With the exception of the guanine NH nitrogen, which possibly experiences a decrease in the electric field gradient upon complexation with cytosine, no indications of significant changes in the electronic environment around the nitrogen nuclei were found for any combination of bases. Forsen–Hoffman spin saturation transfer experiments on the NH and NH2 protons are also presented.



Sign in / Sign up

Export Citation Format

Share Document