Measurement of cerebral blood flow by volume‐selective 19 F NMR spectroscopy

1990 ◽  
Vol 16 (3) ◽  
pp. 489-495 ◽  
Author(s):  
Peter C. M. van Zijl ◽  
Laszlo Ligeti ◽  
Teresa Sinnwell ◽  
Jeffry R. Alger ◽  
A. Scott Chesnick ◽  
...  
Author(s):  
L. Litt ◽  
M.T. Espanol

We believe there are important roles for in vivo NMR spectroscopy techniques in studies of protection and treatment in stroke. Perhaps the primary utility of in vivo NMR spectroscopy is to establish the relevance of metabolic integrity, intracellular pH, and intracellular energy stores to concurrent changes occurring both at gross physiological levels (e.g., changes in cerebral blood flow, or blood oxygenation), and at microscopic or cellular levels. It has long been known that the brain is exquisitely sensitive to deprivations of oxygen, glucose, and cerebral blood flow. Routine human surgery on a limb takes place every day with tourniquets stopping all blood flow for up to two hours. In contrast, the deprivation of all blood flow to the brain (global ischemia) for approximately 5 minutes can result in severe, permanent brain damage. Research has gone on for more than 30 years to understand why the brain’s revival time is so much shorter, and to discover brain biochemical interventions that might dramatically extend the brain’s intolerance beyond 5 minutes, and therefore be relevant to protection and treatment of stroke. (Kogure and Hossmann, 1985; 1993) Stroke, defined as a permanent neurologic deficit arising from the death of brain cells, kills ∼ 150,000 people in the U.S.A. each year, and is the third leading cause of death (Feinleib et al., 1993). It is the next malady to escape, once one has dodged death from cardiovascular disease and cancer. Many, if not most, U.S.A. stroke victims will receive neurological clinical care not substantially different from what was provided 30 years ago. Most stroke patients will be put in intensive care units where blood pressure will be regulated and kept in a “safe” range, with the body given supportive care and the brain given an opportunity to heal itself. The problem of stroke is actually quite complex because there are several different kinds of stroke (ischemic, hemorrhagic, etc.), and because numerous systemic physiological factors are of relevance. Nevertheless, exciting advances in brain biochemistry suggest that stroke therapy and prophylaxis axe likely to improve dramatically in the near future (Zivin and Choi, 1991).


2001 ◽  
Vol 120 (5) ◽  
pp. A637-A637
Author(s):  
Y RINGEL ◽  
D DROSSMAN ◽  
T TURKINGTON ◽  
B BRADSHAW ◽  
R COLEMAN ◽  
...  

2008 ◽  
Vol 22 (2) ◽  
pp. 81-90 ◽  
Author(s):  
Natalie Werner ◽  
Neval Kapan ◽  
Gustavo A. Reyes del Paso

The present study explored modulations in cerebral blood flow and systemic hemodynamics during the execution of a mental calculation task in 41 healthy subjects. Time course and lateralization of blood flow velocities in the medial cerebral arteries of both hemispheres were assessed using functional transcranial Doppler sonography. Indices of systemic hemodynamics were obtained using continuous blood pressure recordings. Doppler sonography revealed a biphasic left dominant rise in cerebral blood flow velocities during task execution. Systemic blood pressure increased, whereas heart period, heart period variability, and baroreflex sensitivity declined. Blood pressure and heart period proved predictive of the magnitude of the cerebral blood flow response, particularly of its initial component. Various physiological mechanisms may be assumed to be involved in cardiovascular adjustment to cognitive demands. While specific contributions of the sympathetic and parasympathetic systems may account for the observed pattern of systemic hemodynamics, flow metabolism coupling, fast neurogenic vasodilation, and cerebral autoregulation may be involved in mediating cerebral blood flow modulations. Furthermore, during conditions of high cardiovascular reactivity, systemic hemodynamic changes exert a marked influence on cerebral blood perfusion.


Sign in / Sign up

Export Citation Format

Share Document