scholarly journals Deciding feasibility of a booking in the European gas market on a cycle is in P for the case of passive networks

Networks ◽  
2021 ◽  
Author(s):  
Martine Labbé ◽  
Fränk Plein ◽  
Martin Schmidt ◽  
Johannes Thürauf
Keyword(s):  
Author(s):  
Fränk Plein ◽  
Johannes Thürauf ◽  
Martine Labbé ◽  
Martin Schmidt

AbstractThe European gas market is organized as a so-called entry-exit system with the main goal to decouple transport and trading. To this end, gas traders and the transmission system operator (TSO) sign so-called booking contracts that grant capacity rights to traders to inject or withdraw gas at certain nodes up to this capacity. On a day-ahead basis, traders then nominate the actual amount of gas within the previously booked capacities. By signing a booking contract, the TSO guarantees that all nominations within the booking bounds can be transported through the network. This results in a highly challenging mathematical problem. Using potential-based flows to model stationary gas physics, feasible bookings on passive networks, i.e., networks without controllable elements, have been characterized in the recent literature. In this paper, we consider networks with linearly modeled active elements such as compressors or control valves. Since these active elements allow the TSO to control the gas flow, the single-level approaches for passive networks from the literature are no longer applicable. We thus present a bilevel model to decide the feasibility of bookings in networks with active elements. While this model is well-defined for general active networks, we focus on the class of networks for which active elements do not lie on cycles. This assumption allows us to reformulate the original bilevel model such that the lower-level problem is linear for every given upper-level decision. Consequently, we derive several single-level reformulations for this case. Besides the classic Karush–Kuhn–Tucker reformulation, we obtain three problem-specific optimal-value-function reformulations. The latter also lead to novel characterizations of feasible bookings in networks with active elements that do not lie on cycles. We compare the performance of our methods by a case study based on data from the .


Energy Policy ◽  
2021 ◽  
Vol 155 ◽  
pp. 112380
Author(s):  
Jian Chai ◽  
Xiaokong Zhang ◽  
Quanying Lu ◽  
Xuejun Zhang ◽  
Yabo Wang

Forecasting ◽  
2020 ◽  
Vol 3 (1) ◽  
pp. 1-16
Author(s):  
Hassan Hamie ◽  
Anis Hoayek ◽  
Hans Auer

The question of whether the liberalization of the gas industry has led to less concentrated markets has attracted much interest among the scientific community. Classical mathematical regression tools, statistical tests, and optimization equilibrium problems, more precisely non-linear complementarity problems, were used to model European gas markets and their effect on prices. In this research, the parametric and nonparametric game theory methods are employed to study the effect of the market concentration on gas prices. The parametric method takes into account the classical Cournot equilibrium test, with assumptions on cost and demand functions. However, the non-parametric method does not make any prior assumptions, a factor that allows greater freedom in modeling. The results of the parametric method demonstrate that the gas suppliers’ behavior in Austria and The Netherlands gas markets follows the Nash–Cournot equilibrium, where companies act rationally to maximize their payoffs. The non-parametric approach validates the fact that suppliers in both markets follow the same behavior even though one market is more liquid than the other. Interestingly, our findings also suggest that some of the gas suppliers maximize their ‘utility function’ not by only relying on profit, but also on some type of non-profit objective, and possibly collusive behavior.


Sign in / Sign up

Export Citation Format

Share Document