Fourth order Runge-Kutta method in 2d for linear boundary value problems

1991 ◽  
Vol 32 (6) ◽  
pp. 1229-1245 ◽  
Author(s):  
Zoltan Demendy
Author(s):  
Mst. Sharmin Banu ◽  

In this paper, it is discussed about Runge-Kutta fourth-order method and Butcher Sixth order Runge-Kutta method for approximating a numerical solution of higher-order initial value and boundary value ordinary differential equations. The proposed methods are most efficient and extolled practically for solving these problems arising indifferent sector of science and engineering. Also, the shooting method is applied to convert the boundary value problems to initial value problems. Illustrative examples are provided to verify the accuracy of the numerical outcome and compared the approximated result with the exact result. The approximated results are found in good agreement with the result of the exact solution and firstly converge to more accuracy in the solution when step size is very small. Finally, the error with different step sizes is analyzed and compared to these two methods.


2016 ◽  
Vol 78 (8-2) ◽  
Author(s):  
Abdul Manaf ◽  
Norma Alias ◽  
Mustafa Habib

In this research article, numerical solution of nonlinear 2nd order two-point boundary value problems (TPBVPs) is discussed by the help of nonlinear shooting method (NLSM), and through the modified nonlinear shooting method (MNLSM). In MNLSM, fourth order Runge-Kutta method for systems is replaced by Adams Bashforth Moulton method which is a predictor-corrector scheme. Results acquired numerically through NLSM and MNLSM of TPBVPs are discussed and analyzed. Results of the tested problems obtained numerically indicate that the performance of MNLSM is rapid and provided desirable results of TPBVPs, meanwhile MNLSM required less time to implement as comparable to the NLSM for the solution of TPBVPs.


In this paper, it is discussed about Runge-Kutta fourth-order method and Butcher Sixth order Runge-Kutta method for approximating a numerical solution of higher-order initial value and boundary value ordinary differential equations. The proposed methods are most efficient and extolled practically for solving these problems arising indifferent sector of science and engineering. Also, the shooting method is applied to convert the boundary value problems to initial value problems. Illustrative examples are provided to verify the accuracy of the numerical outcome and compared the approximated result with the exact result. The approximated results are found in good agreement with the result of the exact solution and firstly converge to more accuracy in the solution when step size is very small. Finally, the error with different step sizes is analyzed and compared to these two methods.


2021 ◽  
Vol 50 (6) ◽  
pp. 1799-1814
Author(s):  
Norazak Senu ◽  
Nur Amirah Ahmad ◽  
Zarina Bibi Ibrahim ◽  
Mohamed Othman

A fourth-order two stage Phase-fitted and Amplification-fitted Diagonally Implicit Two Derivative Runge-Kutta method (PFAFDITDRK) for the numerical integration of first-order Initial Value Problems (IVPs) which exhibits periodic solutions are constructed. The Phase-Fitted and Amplification-Fitted property are discussed thoroughly in this paper. The stability of the method proposed are also given herewith. Runge-Kutta (RK) methods of the similar property are chosen in the literature for the purpose of comparison by carrying out numerical experiments to justify the accuracy and the effectiveness of the derived method.


1972 ◽  
Vol 94 (4) ◽  
pp. 324-329 ◽  
Author(s):  
C. M. Rodkiewicz ◽  
V. Srinivasan

A solution to the elastohydrodynamic lubrication problem for the case of two rolling cylinders, at different speeds, is presented. The lubricant is assumed compressible throughout the region. The fourth-order Runge-Kutta method for the lubricant and an improved quadrature formula for the elastic calculations are used. Pressure and film-thickness profiles are presented for different rolling velocities. There is a good agreement with the experimental film thickness data, available in literature.


Sign in / Sign up

Export Citation Format

Share Document