A nonlocal lattice particle model for J2 plasticity

2020 ◽  
Vol 121 (24) ◽  
pp. 5469-5489
Author(s):  
Haoyang Wei ◽  
Hailong Chen ◽  
Yongming Liu
2014 ◽  
Vol 627 ◽  
pp. 457-460
Author(s):  
Jana Kaděrová ◽  
Jan Eliáš

The paper describes results of numerical simulations of experiments on concrete beams loaded in three-point bending. Stochastic lattice-particle model has been applied in which the material was represented by discrete particles of random size and location. Additional spatial variability of material properties was introduced by stationary autocorrelated random field. Three different types of geometrically similar beams were modeled: half-notched, fifth-notched and unnotched, each in four different sizes. The deterministic and stochastic model parameters were identified via automatic procedure based on comparison to a subset of experimental data, so that the adequacy of the model response could be validated by comparison with the remaining experimental data.


Author(s):  
Hailong Chen ◽  
Yongming Liu

In this paper, we present a nonlocal lattice particle framework for modeling the brittle behaviors of both isotropic and anisotropic solid materials. Different from other continuum based models, the formulation of this lattice particle model is discrete and there is no spatial derivative involved. This avoids the singularity issues of discontinuous problems, which commonly exists in continuum based models. The model is also nonlocal that a discrete element can interacts with its neighbors up to certain distance. This nonlocality better solves some issues in other discrete models, such as fixed range of Poisson’s ratio. The modeling capability and accuracy are demonstrated using numerical examples.


Sign in / Sign up

Export Citation Format

Share Document