scholarly journals On the Euler implicit/explicit iterative scheme for the stationary Oldroyd fluid

2018 ◽  
Vol 34 (3) ◽  
pp. 906-937
Author(s):  
Yingwen Guo ◽  
Yinnian He
2021 ◽  
Vol 396 ◽  
pp. 125933
Author(s):  
Manuela Bastidas Olivares ◽  
Carina Bringedal ◽  
Iuliu Sorin Pop

Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1800
Author(s):  
Samir Brahim Belhaouari ◽  
Yassine Hamdi ◽  
Abdelouahed Hamdi
Keyword(s):  

The modified Totient function of Carmichael λ(.) is revisited, where important properties have been highlighted. Particularly, an iterative scheme is given for calculating the λ(.) function. A comparison between the Euler φ and the reduced totient λ(.) functions aiming to quantify the reduction between is given.


Author(s):  
Jiahui Huang ◽  
Sheng Yang ◽  
Zishuo Zhao ◽  
Yu-Kun Lai ◽  
Shi-Min Hu

AbstractWe present a practical backend for stereo visual SLAM which can simultaneously discover individual rigid bodies and compute their motions in dynamic environments. While recent factor graph based state optimization algorithms have shown their ability to robustly solve SLAM problems by treating dynamic objects as outliers, their dynamic motions are rarely considered. In this paper, we exploit the consensus of 3D motions for landmarks extracted from the same rigid body for clustering, and to identify static and dynamic objects in a unified manner. Specifically, our algorithm builds a noise-aware motion affinity matrix from landmarks, and uses agglomerative clustering to distinguish rigid bodies. Using decoupled factor graph optimization to revise their shapes and trajectories, we obtain an iterative scheme to update both cluster assignments and motion estimation reciprocally. Evaluations on both synthetic scenes and KITTI demonstrate the capability of our approach, and further experiments considering online efficiency also show the effectiveness of our method for simultaneously tracking ego-motion and multiple objects.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Gianluca Teza ◽  
Michele Caraglio ◽  
Attilio L. Stella

AbstractWe show how the Shannon entropy function can be used as a basis to set up complexity measures weighting the economic efficiency of countries and the specialization of products beyond bare diversification. This entropy function guarantees the existence of a fixed point which is rapidly reached by an iterative scheme converging to our self-consistent measures. Our approach naturally allows to decompose into inter-sectorial and intra-sectorial contributions the country competitivity measure if products are partitioned into larger categories. Besides outlining the technical features and advantages of the method, we describe a wide range of results arising from the analysis of the obtained rankings and we benchmark these observations against those established with other economical parameters. These comparisons allow to partition countries and products into various main typologies, with well-revealed characterizing features. Our methods have wide applicability to general problems of ranking in bipartite networks.


Sign in / Sign up

Export Citation Format

Share Document