scholarly journals Intermolecular Charge‐Transfer Luminescence by Self‐Assembly of Pyridinium Luminophores in Solutions

ChemistryOpen ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1081-1086
Author(s):  
Kaspars Leduskrasts ◽  
Edgars Suna
2021 ◽  
Vol 154 (23) ◽  
pp. 234303
Author(s):  
Jie Hu ◽  
Jing-Chen Xie ◽  
Chun-Xiao Wu ◽  
Shan Xi Tian

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Chunzheng Lv ◽  
Lirong He ◽  
Jiahong Tang ◽  
Feng Yang ◽  
Chuhong Zhang

AbstractAs an important photoconductive hybrid material, perylene/ZnO has attracted tremendous attention for photovoltaic-related applications, but generally faces a great challenge to design molecular level dispersed perylenes/ZnO nanohybrids due to easy phase separation between perylenes and ZnO nanocrystals. In this work, we reported an in-situ reaction method to prepare molecular level dispersed H-aggregates of perylene bisimide/ZnO nanorod hybrids. Surface photovoltage and electric field-induced surface photovoltage spectrum show that the photovoltage intensities of nanorod hybrids increased dramatically for 100 times compared with that of pristine perylene bisimide. The enhancement of photovoltage intensities resulting from two aspects: (1) the photo-generated electrons transfer from perylene bisimide to ZnO nanorod due to the electric field formed on the interface of perylene bisimide/ZnO; (2) the H-aggregates of perylene bisimide in ZnO nanorod composites, which is beneficial for photo-generated charge separation and transportation. The introduction of ordered self-assembly thiol-functionalized perylene-3,4,9,10-tetracarboxylic diimide (T-PTCDI)/ ZnO nanorod composites induces a significant improvement in incident photo-to-electron conversion efficiency. This work provides a novel mentality to boost photo-induced charge transfer efficiency, which brings new inspiration for the preparation of the highly efficient solar cell.


2014 ◽  
Vol 7 (5) ◽  
pp. 1661-1669 ◽  
Author(s):  
Rijo T. Cheriya ◽  
Ajith R. Mallia ◽  
Mahesh Hariharan

This work highlights the utility of π–π stacked self-assembly for enhanced survival time of charge transfer intermediates upon photoexcitation of donor–acceptor systems.


2021 ◽  
Author(s):  
Chen Zhu ◽  
Serik Zhumagazy ◽  
Huifeng Yue ◽  
Magnus Rueping

Metal-free C-Se cross-couplings via the formation of electron-donor-acceptor (EDA) complexes have been developed. The visible-light induced reactions can be applied for the synthesis of a series of unsymmetrical diaryl selenides...


2021 ◽  
Author(s):  
Qi Sun ◽  
Jiajun Ren ◽  
Tong Jiang ◽  
Qian Peng ◽  
Qi Ou ◽  
...  

Superior organic light-emitting transistors (OLETs) materials require two conventionally exclusive properties: strong luminescence and high charge mobilities. We propose a three-state model through localized diabatization to quantitative analyze excited state structures for various herringbone (HB) H-aggregates and demonstrate that for some investigated systems, the low-lying intermolecular charge-transfer (CT) state couples with the bright Frenkel exciton (FE) and forms a dipole-allowed S<sub>1</sub> that lies below the dark state, proceeding strong luminescence. Specifically, such conversion in luminescence properties occurs when the electron- and hole-transfer integrals ( and ) are of the same sign and is notably larger than the excitonic coupling (<i>J</i>), i.e., . This theoretical finding can not only explain and rationalize recent experimental results on DPA and dNaAnt, both with OLET property, but also unravel an exciting scenario where strong luminescence and high charge mobilities are compatible, which will considerably broaden the aperture of novel OLET design.


Sign in / Sign up

Export Citation Format

Share Document