scholarly journals An Efficient Adjoint Sensitivity Analysis of Flexible Multibody Systems for a Level‐set‐based Topology Optimization

PAMM ◽  
2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Ali Azari Nejat ◽  
Alexander Held ◽  
Robert Seifried
Author(s):  
Ali Moghadasi ◽  
Alexander Held ◽  
Robert Seifried

In recent years, topology optimization has been used for optimizing members of flexible multibody systems to enhance their performance. Here, an extension to existing topology optimization schemes for flexible multibody systems is presented in which a more accurate model of revolute joints and bearing domains is included. This extension is of special interest since a connection between flexible members in a multibody system using revolute joints is seen in many applications. Moreover, the modeling accuracy of the bearing area is shown to be influential on the shape of the optimized structure. In this work, the flexible bodies are incorporated in the multibody simulation using the floating frame of reference formulation, and their elastic deformation is approximated using global shape functions calculated in the model order reduction analysis. The modeling of revolute joints using Hertzian contact law is incorporated in this framework by introducing a corrector load in the bearing model. Furthermore, an application example of a flexible multibody system with revolute joints is optimized for minimum value of compliance, and a comparative study of the optimization result is performed with an equivalent system which is modeled with nonlinear finite elements.


Author(s):  
Wang Zhe ◽  
Qiang Tian ◽  
Hiayan Hu

The dynamics of flexible multibody systems with interval parameters is studied based on a non-intrusive computation methodology. The Absolute Nodal Coordinate Formulation (ANCF) is used to model the rigid-flexible multibody system, including the finite elements of the ANCF and the ANCF Reference Nodes (ANCF-RNs). The Chebyshev sampling methods including Chebyshev tensor product (CTP) sampling method and Chebyshev collocation method (CCM), are utilized to generate the Chebyshev surrogate model for Interval Differential Algebraic Equations (IDAEs). For purpose of preventing the interval explosion problem and maintaining computation efficiency, the interval bounds of the IDAEs are determined by scanning the deduced Chebyshev surrogate model. To further improve the computation efficiency, OpenMP directives are also used to parallelize the solving process of the Differential Algebraic Equations (DAEs) by fixing the uncertain interval parameter at the given sampling points. The sensitivity analysis of flexible multibody systems with interval parameters is initially performed by using the direct differentiation method. The direct differentiation method differentiates the dynamic equations with respect to the design variable, which yields the system sensitivity equations governed by DAEs. The generalized alpha method is introduced to integrate the sensitivity DAEs. The sensitivity equations of flexible multibody systems with interval parameters are also described by the IDAEs. Based on the continuum mechanics, the computational efficient analytical formulations for the derivative items of the system sensitivity equations are deduced. Three examples are studied to validate the proposed methodology, including the complicated spatial rigid-flexible multibody systems with a large number of uncertain interval parameters, the flexible system with uncertain interval clearance size joint, and the first order sensitivity analysis of flexible multibody systems with interval parameters. Firstly, the dynamics analysis of a six-arm space robot with six interval parameters is performed. For this case study, the interval dynamics cannot be obtained by directly scanning the IDAEs because extremely huge sets of DAEs with deterministic samples have to be solved. The estimated total computational time for solving the scanned IDAEs will be 1850 days! However, the computational time for solving the scanned Chebyshev surrogate model is 9796.97 seconds. It shows the effectiveness of the proposed computation methodology. Then, the nonlinear dynamics of a planar slider-crank mechanism with uncertain interval clearance size joint is studied in this work. The kinetics model of the revolute clearance joints is formulated under the ANCF-RN framework. Moreover, the influence of the LuGre and the modified Coulomb’s friction force models on the system’s dynamic response is investigated. By analyzing the bounds of dynamic response, the bifurcation diagrams are observed. It must be highlighted that with increasing the size of clearance, it does not automatically lead to unstable behaviors. Finally, the first order sensitivity analysis of flexible multibody systems with interval parameters is also studied in this work. The third one of a flexible mechanism with interval parameters is used to perform the sensitivity analysis.


Author(s):  
Alfonso Callejo ◽  
Valentin Sonneville ◽  
Olivier A. Bauchau

The gradient-based design optimization of mechanical systems requires robust and efficient sensitivity analysis tools. The adjoint method is regarded as the most efficient semi-analytical method to evaluate sensitivity derivatives for problems involving numerous design parameters and relatively few objective functions. This paper presents a discrete version of the adjoint method based on the generalized-alpha time integration scheme, which is applied to the dynamic simulation of flexible multibody systems. Rather than using an ad hoc backward integration solver, the proposed approach leads to a straightforward algebraic procedure that provides design sensitivities evaluated to machine accuracy. The approach is based on an intrinsic representation of motion that does not require a global parameterization of rotation. Design parameters associated with rigid bodies, kinematic joints, and beam sectional properties are considered. Rigid and flexible mechanical systems are investigated to validate the proposed approach and demonstrate its accuracy, efficiency, and robustness.


Sign in / Sign up

Export Citation Format

Share Document