Mode II interlaminar fracture behavior of carbon bead-filled epoxy/glass fiber hybrid composite

2000 ◽  
Vol 21 (2) ◽  
pp. 343-352 ◽  
Author(s):  
Jung Ju Lee ◽  
Jeong Ok Lim ◽  
Jeung Soo Huh
2022 ◽  
Vol 154 ◽  
pp. 106574
Author(s):  
Francisco Maciel Monticeli ◽  
Maria Odila Hilário Cioffi ◽  
Herman Jacobus Cornelis Voorwald

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Hardik Bhanushali ◽  
Philip D. Bradford

This investigation describes the design, fabrication, and testing of woven glass fiber reinforced epoxy matrix laminates with aligned CNT sheets integrated between plies in order to improve the matrix dominated through thickness properties such as the interlaminar fracture toughness at ply interfaces. Using aligned CNT sheets allows for a concentration of millimeter long CNTs at the most likely point of laminate failure. Mode I and Mode II interlaminar fracture toughness of various CNT modified samples were investigated using double cantilever beam (DCB) and end notched flexure (ENF) experiments, respectively. Short beam strength (SBS) and in-plane tensile properties of the CNT modified samples were also investigated. Moderate improvement was observed in Mode I and Mode II fracture toughness at crack initiation when aligned CNT sheets with a basis weight of 0.354 g/m2were used to modify the ply interface. No compromise in the in-plane mechanical properties of the laminate was observed and very little improvement was observed in the shear related short beam strength of the CNT modified laminates as compared to the control samples. Integration of aligned CNT sheets into the composite laminate imparted in-plane and through thickness electrical properties into the nonconductive glass fiber reinforced epoxy composite laminates.


2015 ◽  
Vol 2015 ◽  
pp. 1-6
Author(s):  
Yu Liu ◽  
Cheng-Bing Qu ◽  
Qing-Ping Feng ◽  
Hong-Mei Xiao ◽  
Shao-Yun Fu

A typical diglycidyl ether of bisphenol-F (DGEBF)/diethyl toluene diamine (DETD) epoxy system modified by multiwalled carbon nanotubes (MWCNTs) and a reactive aliphatic diluent named n-butyl glycidyl ether (BGE) was used as the matrix for glass fiber composites. The glass fiber (GF) reinforced composites based on the unmodified and modified epoxy matrices were prepared by the hand lay-up hot-press process. Mode II interlaminar fracture toughness at both room temperature (RT) and cryogenic temperature (77 K) of the GF reinforced epoxy composites was investigated to examine the effect of the matrix modification. The result showed that the introduction of MWCNTs and BGE at their previously reported optimal contents led to the remarkable enhancement in mode II interlaminar fracture toughness of the composites. Namely, the 22.9% enhancement at RT and the 31.4% enhancement at 77 K were observed for mode II interlaminar fracture toughness of the fiber composite based on the optimally modified epoxy matrix by MWCNTs and BGE compared to the unmodified case.


2000 ◽  
Vol 7 (5-6) ◽  
pp. 363-383 ◽  
Author(s):  
M. Kotaki ◽  
T. Kuriyama ◽  
H. Hamada ◽  
Z. Maekawa ◽  
I. Narisawa

Sign in / Sign up

Export Citation Format

Share Document