scholarly journals Enhancement in Mode II Interlaminar Fracture Toughness at Cryogenic Temperature of Glass Fiber/Epoxy Composites through Matrix Modification by Carbon Nanotubes and n-Butyl Glycidyl Ether

2015 ◽  
Vol 2015 ◽  
pp. 1-6
Author(s):  
Yu Liu ◽  
Cheng-Bing Qu ◽  
Qing-Ping Feng ◽  
Hong-Mei Xiao ◽  
Shao-Yun Fu

A typical diglycidyl ether of bisphenol-F (DGEBF)/diethyl toluene diamine (DETD) epoxy system modified by multiwalled carbon nanotubes (MWCNTs) and a reactive aliphatic diluent named n-butyl glycidyl ether (BGE) was used as the matrix for glass fiber composites. The glass fiber (GF) reinforced composites based on the unmodified and modified epoxy matrices were prepared by the hand lay-up hot-press process. Mode II interlaminar fracture toughness at both room temperature (RT) and cryogenic temperature (77 K) of the GF reinforced epoxy composites was investigated to examine the effect of the matrix modification. The result showed that the introduction of MWCNTs and BGE at their previously reported optimal contents led to the remarkable enhancement in mode II interlaminar fracture toughness of the composites. Namely, the 22.9% enhancement at RT and the 31.4% enhancement at 77 K were observed for mode II interlaminar fracture toughness of the fiber composite based on the optimally modified epoxy matrix by MWCNTs and BGE compared to the unmodified case.

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Hardik Bhanushali ◽  
Philip D. Bradford

This investigation describes the design, fabrication, and testing of woven glass fiber reinforced epoxy matrix laminates with aligned CNT sheets integrated between plies in order to improve the matrix dominated through thickness properties such as the interlaminar fracture toughness at ply interfaces. Using aligned CNT sheets allows for a concentration of millimeter long CNTs at the most likely point of laminate failure. Mode I and Mode II interlaminar fracture toughness of various CNT modified samples were investigated using double cantilever beam (DCB) and end notched flexure (ENF) experiments, respectively. Short beam strength (SBS) and in-plane tensile properties of the CNT modified samples were also investigated. Moderate improvement was observed in Mode I and Mode II fracture toughness at crack initiation when aligned CNT sheets with a basis weight of 0.354 g/m2were used to modify the ply interface. No compromise in the in-plane mechanical properties of the laminate was observed and very little improvement was observed in the shear related short beam strength of the CNT modified laminates as compared to the control samples. Integration of aligned CNT sheets into the composite laminate imparted in-plane and through thickness electrical properties into the nonconductive glass fiber reinforced epoxy composite laminates.


2013 ◽  
Vol 392 ◽  
pp. 73-77
Author(s):  
Helen Wu

In this study, core-shell rubber (CSR) and liquid rubber (LR) were used to modify the matrix toughness of unidirectional carbon fibre/epoxy composites. Double cantilever beam (DCB) and end notched flexure (END) tests were performed to evaluate the interlaminar fracture toughness. It was found that LR was identified to be more effective than CSR in improving GICand GIICof the composites, although fracture toughness of the CSR-modified epoxy was better than that of the LR-modified epoxy. SEM observation of post-fracture surfaces of the specimens shows that the degree of plastic deformation of matrix is well related to the rating of fracture toughness of composites for these unmodified and modified composite laminates, and is the key factor controlling the interlaminar fracture toughness of composite laminates. Further, it was confirmed that rigid fibres constrain growth of plastic zone in composites laminates, comparing with toughened bulk epoxy matrix. However, plastic zone is not limited to a single resin layer and it is capable of developing across rigid fibre layers.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2103
Author(s):  
Christophe Floreani ◽  
Colin Robert ◽  
Parvez Alam ◽  
Peter Davies ◽  
Conchúr M. Ó. Brádaigh

Powder epoxy composites have several advantages for the processing of large composite structures, including low exotherm, viscosity and material cost, as well as the ability to carry out separate melting and curing operations. This work studies the mode I and mixed-mode toughness, as well as the in-plane mechanical properties of unidirectional stitched glass and carbon fibre reinforced powder epoxy composites. The interlaminar fracture toughness is studied in pure mode I by performing Double Cantilever Beam tests and at 25% mode II, 50% mode II and 75% mode II by performing Mixed Mode Bending testing according to the ASTM D5528-13 test standard. The tensile and compressive properties are comparable to that of standard epoxy composites but both the mode I and mixed-mode toughness are shown to be significantly higher than that of other epoxy composites, even when comparing to toughened epoxies. The mixed-mode critical strain energy release rate as a function of the delamination mode ratio is also provided. This paper highlights the potential for powder epoxy composites in the manufacturing of structures where there is a risk of delamination.


2018 ◽  
Vol 1 (2) ◽  
Author(s):  
Mohamad Alsaadi 1,2 ◽  
Ahmet Erkliğ 2

In this study, the influence of sewage sludge ash (SSA) waste particle contents on the mechanical properties and interlaminar fracture toughness for mode I and mode II delamination of S-glass fiber reinforced epoxy composites were investigated. Composite laminate specimens for tensile, flexural double-cantilever beam (DCB) and end-notched flexure (ENF) tests were prepared and tested according to ASTM standards with 5, 10, 15 and 20 wt% SSA filled S-glass/epoxy composites. Properties improvement reasons was explained based on optical and scanning electron microscopy. The highest improvement in tensile and flexural strength was obtained with 10 wt% content of SSA. The highest mode I and mode II interlaminar fracture toughness’s were obtained with 15 wt% content of SSA. The mode I and mode II interlaminar fracture toughness’s improved by 33 and 63.6%, respectively, compared to the composite without SSA.


Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 803 ◽  
Author(s):  
Feng Xu ◽  
Bo Yang ◽  
Lijie Feng ◽  
Dedong Huang ◽  
Min Xia

Non-woven carbon tissue (NWCT) with different fiber lengths was prepared with a simple surfactant-assistant dispersion and filtration method and used as interleaving to enhance both delamination resistance and electrical conductivity of carbon fiber reinforced plastics (CFRPs) laminates. The toughing effect of NWCT on both Mode I and Mode II interlaminar fracture of CFRPs laminate is dependent on length of fibers, where the shorter carbon fibers (0.8 mm) perform better on Mode I interlaminar fracture toughness improvement whereas longer carbon fibers (4.3 mm) give more contribution to the Mode II interlaminar fracture toughness increase, comparing with the baseline composites, and the toughness increase was achieved without compromising of flexural mechanical properties. More interestingly, comparing with the baseline composites, the electrical conductivity of the interleaved composites exhibited a significant enhancement with in-plane and through-the-thickness direction, respectively. Microscopy analysis of the carbon tissue interleaving area in the laminate indicated that carbon fibers with shorter length can form into a 3D network with more fibers aligned along through-the-thickness direction compared with longer ones. The shorter fibers thus potentially provide more effective fiber bridges, pull-out and matrix deformation during the crack propagation and improve the electric conductivity significantly in through-the-thickness direction.


2020 ◽  
pp. 002199832095078
Author(s):  
Julio A Rodríguez-González ◽  
Carlos Rubio-González

In this work, the effect of seawater ageing on mode I and mode II interlaminar fracture toughness ([Formula: see text] and [Formula: see text]) of prepreg-based woven glass fiber/epoxy laminates with and without multiwall carbon nanotubes (MWCNTs) has been investigated. The first part of the investigation reports the moisture absorption behavior of multiscale composite laminates exposed to seawater ageing for ∼3912 h at 70 °C. Then, the results of mode I and mode II fracture tests are presented and a comparison of [Formula: see text] and [Formula: see text] for each type of material group and condition is made. Experimental results showed the significant effect of seawater ageing on [Formula: see text] of multiscale composite laminates due to matrix plasticization and fiber bridging. The improvement in [Formula: see text] of the wet glass fiber/epoxy laminate was about 50% higher than that of the neat laminate (without MWCNTs) under dry condition. It was also found that the presence of MWCNTs into composite laminates promotes a moderate increase (8%) in their [Formula: see text] as a result of the additional toughening mechanisms induced by CNTs during the delamination process. Scanning electron microscopy analysis conducted on fracture surface of specimens reveals the transition from brittle (smooth surface) to ductile (rough surface) in the morphology of composite laminates due to the influence of seawater ageing on the polymeric matrix and fiber/matrix interface.


2007 ◽  
Vol 121-123 ◽  
pp. 1403-1406 ◽  
Author(s):  
Shi Qiang Deng ◽  
P. Rosso ◽  
Lin Ye ◽  
Klaus Friedrich

Fracture toughness and other mechanical properties of epoxies modified with nano-slica particles were measured to elaborate effects of nano-additives on fracture behaviour of the modified epoxies. Interlaminar fracture behaviours of the nano-silica modified CF/EP composites were subsequently investigated by conducting Mode-I and Mode-II interlaminar fracture toughness tests as well as transverse tension tests. It was found that the fracture toughness of the nano-silica modified epoxies and the interlaminar fracture toughness of nano-silica modified CF/EP composites have been increased significantly (>50%), while the strength and modulus of the materials remain unchanged or slightly higher. In particular, the nano-silica modified epoxies showed only very little reduction in the glass transition temperature (Tg).


Sign in / Sign up

Export Citation Format

Share Document