Comparative study of the thermal and mechanical properties of nanocomposites prepared by in situ polymerization of ε-caprolactone and functionalized carbon nanotubes

2012 ◽  
Vol 33 (4) ◽  
pp. 562-572 ◽  
Author(s):  
Víctor H. Antolín-Cerón ◽  
Sergio Gómez-Salazar ◽  
Martin Rabelero ◽  
Víctor Soto ◽  
Gabriel Luna-Bárcenas ◽  
...  
2012 ◽  
Vol 573-574 ◽  
pp. 1163-1166
Author(s):  
Shi Yun Li ◽  
De Sheng Hu

The MWNTs/PE nanocomposites are prepared by in situ polymerization with mulltiwalled carbon nanotubes (MWNTs) supported Cp2ZrCl2 catalyst and MAO as cocatalyst. The SEM and AFM results show that MWNTs are exfoliated and homogenously dispersed in PE matrix by the in situ polymerization. The up-shifting of the G band in Raman spectra show the strong compressive forces associated with PE chains on the MWNTs. The storage modulus of the MWNTs/PE nanocomposite can be increased by 160% even at low amount of MWNTs (0.2 wt %) due to MWNTs well-dispersed and exfoliated in the matrix. The TGA and DMA tests point to significant improvements on thermal and mechanical properties of the PE/MWNTs nanocomposites compared to pure PE.


2011 ◽  
Vol 236-238 ◽  
pp. 2063-2066
Author(s):  
Xian Kai Jiang ◽  
Ji You Gu ◽  
Yan Hua Zhang

Mechanical properties of polyurethane coating were improved by multi-walled carbon nanotubes (MWNTs) via in situ polymerization and blending polymerization. Fourier transform infrared spectroscopy (FT-IR) measurement was employed to assess the influence of acid treatment on MWNTs. Mechanical properties analysis of polyurethane coatings including tensile strength, elastic modulus, hardness, flexibility, impact resistance were employed to assess the improvement of mechanical properties of polyurethane coating by MWNTs. The results indicated that MWNTs could improve the mechanical properties of polyurethane coatings, and the improvement of polyurethane coatings by MWNTs via in situ polymerization were better than via blending polymerization, and the improvement of polyurethane coatings by acid-treated MWNTs were better than by raw MWNTs.


e-Polymers ◽  
2009 ◽  
Vol 9 (1) ◽  
Author(s):  
Martino Colonna ◽  
Corrado Berti ◽  
Enrico Binassi ◽  
Maurizio Fiorini ◽  
Francesco Acquasanta ◽  
...  

AbstractMulti-wall carbon nanotubes/poly(butylene terephthalate) nanocomposites have been prepared by in-situ polymerization. Benzimidazolium tetrafluoroborate salts improve the dispersion of carbon nanotubes in the polymer matrix due to the formation of “π-cation” interactions of the imidazolium salt with the surface of the carbon nanotubes. An improved dispersion of the nanotubes in butanediol was also observed using the benzimidazolium salt. The presence of the compatibilization agent gives rise to improved thermo-mechanical properties and electrical conductivity for the nanocomposite. The presence of the nanotubes also consistently increases the thermal stability and enhances the nucleation process on PBT crystallization.


2014 ◽  
Vol 893 ◽  
pp. 241-244
Author(s):  
Yong Hui Lv ◽  
Bao Xiang Deng

The acidified multi-walled carbon nanotubes (MWNTs-COOH) was obtained by nitric acid treatment on multi-walled carbon nanotubes (MWNTs).The PI/MWNTs-COOH composite films were synthesized by in situ polymerization. The thermal stability, resistance and mechanical properties of PI/MWNTs-COOH composite were evaluated. The results showed that: the composites maintained a good thermal stability with the addition of the MWNTs-COOH; the resistance of the composite film dropped at first, and rose up later. While the tensile strength increased at first and then decreased. In conclusion, the PI/MWNTs-COOH composite films exhibited better thermal, antistatic and mechanical properties compared with neat PI.


Sign in / Sign up

Export Citation Format

Share Document