Simulation prediction of the preform deformation and resin flow in vacuum infusion process

2014 ◽  
Vol 35 (10) ◽  
pp. 1968-1979 ◽  
Author(s):  
Bo Yang ◽  
Tianguo Jin ◽  
Jianguang Li ◽  
Fengyang Bi
2021 ◽  
pp. 073168442110176
Author(s):  
Juan Ignacio Morán ◽  
Leandro Nicolás Ludueña ◽  
Ariel Leonardo Stocchi ◽  
Alejandro Daniel Basso ◽  
Gaston Francucci

This article describes a novel variant of the vacuum infusion process based on a multifunctional elastomeric reusable vacuum bag. The main innovation of this process is an elastomeric membrane having resin flow channels that can be controlled during the infusion process: they can be activated for the impregnation stage to enhance resin flow and removed during the curing stage to provide a smooth surface finish to the part. In addition, the size of the resin flow channels can be modified during the infusion providing control on the impregnation rate. This article describes the driven flow vacuum infusion (DFVI) process and presents analytical calculations regarding the effect of the geometrical design of the membrane and the processing variables on the porosity, permeability, and volume of resin transported by the flow medium. Preliminary results of unidirectional resin infusion tests comparing the DFVI process to traditional vacuum infusion and SCRIMP are also presented.


Author(s):  
R. T. Durai Prabhakaran ◽  
Aage Lystrup ◽  
Tom Løgstrup Andersen

The composite industry looks toward a new material system (resins) based on thermoplastic polymers for the vacuum infusion process, similar to the infusion process using thermosetting polymers. A large number of thermoplastics are available in the market with a variety of properties suitable for different engineering applications, and few of those are available in a not yet polymerised form suitable for resin infusion. The proper selection of a new resin system among these thermoplastic polymers is a concern for manufactures in the current scenario and a special mathematical tool would be beneficial. In this paper, the authors introduce a new decision making tool for resin selection based on significant attributes. This article provides a broad overview of suitable thermoplastic material systems for vacuum infusion process available in today’s market. An illustrative example—resin selection for vacuum infused of a wind turbine blade—is shown to demonstrate the intricacies involved in the proposed methodology for resin selection.


2007 ◽  
Vol 38 (5) ◽  
pp. 1271-1287 ◽  
Author(s):  
Dhiren Modi ◽  
Nuno Correia ◽  
Michael Johnson ◽  
Andrew Long ◽  
Christopher Rudd ◽  
...  

Author(s):  
R. T. Durai Prabhakaran ◽  
Aage Lystrup ◽  
Tom Løgstrup Andersen

The composite industry looks toward a new material system (resins) based on thermoplastic polymers for the vacuum infusion process, similar to the infusion process using thermosetting polymers. A large number of thermoplastics are available in the market with a variety of properties suitable for different engineering applications, and few of those are available in a not yet polymerised form suitable for resin infusion. The proper selection of a new resin system among these thermoplastic polymers is a concern for manufactures in the current scenario and a special mathematical tool would be beneficial. In this paper, the authors introduce a new decision making tool for resin selection based on significant attributes. This article provides a broad overview of suitable thermoplastic material systems for vacuum infusion process available in today’s market. An illustrative example—resin selection for vacuum infused of a wind turbine blade—is shown to demonstrate the intricacies involved in the proposed methodology for resin selection.


2020 ◽  
Vol 21 ◽  
pp. 1244-1249 ◽  
Author(s):  
Tushar Gajjar ◽  
Dhaval B. Shah ◽  
S.J. Joshi ◽  
K.M. Patel

2020 ◽  
pp. 002199832096317
Author(s):  
Baris Caglar ◽  
Mert Hancioglu ◽  
E Murat Sozer

The main hurdles in Vacuum Infusion (VI) are the difficulty in achieving complete mold filling and uniform part thickness. This study integrates process monitoring by full field thickness measurements and resin flow modeling that accounts for compaction and permeability characterizations of fabric reinforcements to assess the evolution of part thickness during filling and post-filling stages of VI process. A Structured Light Scanning system is used for full field thickness monitoring in experiments and a Control Volume Finite Element Method solver is implemented to couple resin flow with fabric’s compaction and permeability. Two cases are studied both experimentally and numerically. Evolutions of thickness and pressure validate the developed flow solver, its accuracy in terms of predicting fill times and fill patterns, suitability and limitations of the elastic compaction models for thickness modeling.


Sign in / Sign up

Export Citation Format

Share Document