structured light scanning
Recently Published Documents


TOTAL DOCUMENTS

76
(FIVE YEARS 31)

H-INDEX

9
(FIVE YEARS 3)

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 560
Author(s):  
Sofia Zahia ◽  
Begonya Garcia-Zapirain ◽  
Jon Anakabe ◽  
Joan Ander ◽  
Oscar Jossa Bastidas ◽  
...  

This papers presents a comparative study of three different 3D scanning modalities to acquire 3D meshes of stoma barrier rings from ostomized patients. Computerized Tomography and Structured light scanning methods were the digitization technologies studied in this research. Among the Structured Light systems, the Go!Scan 20 and the Structure Sensor were chosen as the handheld 3D scanners. Nineteen ostomized patients took part in this study, starting from the 3D scans acquisition until the printed ostomy patches validation. 3D mesh processing, mesh generation and 3D mesh comparison was carried out using commercial softwares. The results of the presented study show that the Structure Sensor, which is the low cost structured light 3D sensor, has a great potential for such applications. This study also discusses the benefits and reliability of low-cost structured light systems.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8359
Author(s):  
Jianping Zhao ◽  
Yong Cheng ◽  
Gen Cai ◽  
Shengbo He ◽  
Libing Liao ◽  
...  

This paper proposes a calibration method for a self-rotating, linear-structured-light (LSL) scanning, three-dimensional reconstruction system based on plane constraints. The point cloud of plane target collected by the self-rotating, LSL scanning, 3D reconstruction system should be constrained to the basic principle of the plane equation; it can quickly and accurately calibrate the position parameters between the coordinate system of the LSL module and the coordinate system of the self-rotating, LSL scanning, 3D reconstruction system. Additionally, the transformation equation could be established with the calibrated optimal position parameters. This paper obtains the above-mentioned position parameters through experiments and uses the calibrated self-rotating, LSL scanning, 3D reconstruction system to perform three-dimensional scanning and reconstruction of the test piece. The experimental results show that the calibration method can effectively improve the measurement accuracy of the system.


2021 ◽  
Vol 13 (21) ◽  
pp. 4457
Author(s):  
Bin Cui ◽  
Wei Tao ◽  
Hui Zhao

Three-dimensional reconstruction technology has demonstrated broad application potential in the industrial, construction, medical, forestry, agricultural, and pastural sectors in the last few years. High-quality digital point cloud information exists to help researchers to understand objects and environments. However, current research mainly focuses on making adaptive adjustments to various scenarios and related issues in the application of this technology rather than looking for further improvements and enhancements based on technical principles. Meanwhile, a review of approaches, algorithms, and techniques for high-precision 3D reconstruction utilizing line-structured light scanning, which is analyzed from a deeper perspective of elementary details, is lacking. This paper takes the technological path as the logical sequence to provide a detailed summary of the latest development status of each key technology, which will serve potential users and new researchers in this field. The focus is placed on exploring studies reconstructing small-to-medium-sized objects, as opposed to performing large-scale reconstructions in the field.


2021 ◽  
Vol 68 ◽  
pp. 1824-1836
Author(s):  
Aaron Cornelius ◽  
Jake Dvorak ◽  
Leah Jacobs ◽  
Joshua Penney ◽  
Tony Schmitz

2021 ◽  
Vol 1 ◽  
pp. 11-20
Author(s):  
Owen Freeman Gebler ◽  
Mark Goudswaard ◽  
Ben Hicks ◽  
David Jones ◽  
Aydin Nassehi ◽  
...  

AbstractPhysical prototyping during early stage design typically represents an iterative process. Commonly, a single prototype will be used throughout the process, with its form being modified as the design evolves. If the form of the prototype is not captured as each iteration occurs understanding how specific design changes impact upon the satisfaction of requirements is challenging, particularly retrospectively.In this paper two different systems for digitising physical artefacts, structured light scanning (SLS) and photogrammetry (PG), are investigated as means for capturing iterations of physical prototypes. First, a series of test artefacts are presented and procedures for operating each system are developed. Next, artefacts are digitised using both SLS and PG and resulting models are compared against a master model of each artefact. Results indicate that both systems are able to reconstruct the majority of each artefact's geometry within 0.1mm of the master, however, overall SLS demonstrated superior performance, both in terms of completion time and model quality. Additionally, the quality of PG models was far more influenced by the effort and expertise of the user compared to SLS.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1068
Author(s):  
Janus Nørtoft Jensen ◽  
Morten Hannemose ◽  
J. Andreas Bærentzen ◽  
Jakob Wilm ◽  
Jeppe Revall Frisvad ◽  
...  

When 3D scanning objects, the objective is usually to obtain a continuous surface. However, most surface scanning methods, such as structured light scanning, yield a point cloud. Obtaining a continuous surface from a point cloud requires a subsequent surface reconstruction step, which is directly affected by any error from the computation of the point cloud. In this work, we propose a one-step approach in which we compute the surface directly from structured light images. Our method minimizes the least-squares error between photographs and renderings of a triangle mesh, where the vertex positions of the mesh are the parameters of the minimization problem. To ensure fast iterations during optimization, we use differentiable rendering, which computes images and gradients in a single pass. We present simulation experiments demonstrating that our method for computing a triangle mesh has several advantages over approaches that rely on an intermediate point cloud. Our method can produce accurate reconstructions when initializing the optimization from a sphere. We also show that our method is good at reconstructing sharp edges and that it is robust with respect to image noise. In addition, our method can improve the output from other reconstruction algorithms if we use these for initialization.


2021 ◽  
Vol 7 (1) ◽  
pp. 51-83
Author(s):  
Davide Tanasi ◽  
Stephan Hassam ◽  
Kaitlyn Kingsland ◽  
Paolo Trapani ◽  
Matthew King ◽  
...  

Abstract The archaeological site of the Domus Romana in Rabat, Malta was excavated almost 100 years ago yielding artefacts from the various phases of the site. The Melite Civitas Romana project was designed to investigate the domus, which may have been the home of a Roman Senator, and its many phases of use. Pending planned archaeological excavations designed to investigate the various phases of the site, a team from the Institute for Digital Exploration from the University of South Florida carried out a digitization campaign in the summer of 2019 using terrestrial laser scanning and aerial digital photogrammetry to document the current state of the site to provide a baseline of documentation and plan the coming excavations. In parallel, structured light scanning and photogrammetry were used to digitize 128 artefacts in the museum of the Domus Romana to aid in off-site research and create a virtual museum platform for global dissemination.


Sign in / Sign up

Export Citation Format

Share Document