The driven flow vacuum infusion process: An overview and analytical design

2021 ◽  
pp. 073168442110176
Author(s):  
Juan Ignacio Morán ◽  
Leandro Nicolás Ludueña ◽  
Ariel Leonardo Stocchi ◽  
Alejandro Daniel Basso ◽  
Gaston Francucci

This article describes a novel variant of the vacuum infusion process based on a multifunctional elastomeric reusable vacuum bag. The main innovation of this process is an elastomeric membrane having resin flow channels that can be controlled during the infusion process: they can be activated for the impregnation stage to enhance resin flow and removed during the curing stage to provide a smooth surface finish to the part. In addition, the size of the resin flow channels can be modified during the infusion providing control on the impregnation rate. This article describes the driven flow vacuum infusion (DFVI) process and presents analytical calculations regarding the effect of the geometrical design of the membrane and the processing variables on the porosity, permeability, and volume of resin transported by the flow medium. Preliminary results of unidirectional resin infusion tests comparing the DFVI process to traditional vacuum infusion and SCRIMP are also presented.

2014 ◽  
Vol 35 (10) ◽  
pp. 1968-1979 ◽  
Author(s):  
Bo Yang ◽  
Tianguo Jin ◽  
Jianguang Li ◽  
Fengyang Bi

Author(s):  
R. T. Durai Prabhakaran ◽  
Aage Lystrup ◽  
Tom Løgstrup Andersen

The composite industry looks toward a new material system (resins) based on thermoplastic polymers for the vacuum infusion process, similar to the infusion process using thermosetting polymers. A large number of thermoplastics are available in the market with a variety of properties suitable for different engineering applications, and few of those are available in a not yet polymerised form suitable for resin infusion. The proper selection of a new resin system among these thermoplastic polymers is a concern for manufactures in the current scenario and a special mathematical tool would be beneficial. In this paper, the authors introduce a new decision making tool for resin selection based on significant attributes. This article provides a broad overview of suitable thermoplastic material systems for vacuum infusion process available in today’s market. An illustrative example—resin selection for vacuum infused of a wind turbine blade—is shown to demonstrate the intricacies involved in the proposed methodology for resin selection.


Author(s):  
Debabrata Adhikari ◽  
Suhasini Gururaja

Modeling resin flow for a Vacuum Assisted Resin Transfer Molding (VARTM) process involves developing an approach for coupled flow-compaction, porosity-permeability, resin-cure and stress-development phenomena. In the present work, a modified transient incompressible resin flow model has been developed for VARTM without considering the constant flow rate assumption. The use of High Permeability Medium (HPM) during VARTM results in a through-thickness flow in addition to in-plane flow developing due to the pressure gradient. Results have been validated with existing literature. Fill time comparisons for with and without HPM cases have been presented. Some preliminary results of 2D plane flow have also been obtained which show promise in replicating the physics of vacuum assisted resin infusion composite manufacturing process.


2007 ◽  
Vol 38 (5) ◽  
pp. 1271-1287 ◽  
Author(s):  
Dhiren Modi ◽  
Nuno Correia ◽  
Michael Johnson ◽  
Andrew Long ◽  
Christopher Rudd ◽  
...  

2016 ◽  
Vol 50 (29) ◽  
pp. 4171-4186 ◽  
Author(s):  
Bo Yang ◽  
Qian Tang ◽  
Shilong Wang ◽  
Tianguo Jin ◽  
Fengyang Bi

Resin infusion (RI) process has been widely used for manufacturing composite parts. The variation of preform thickness brings great difficulty to the three-dimensional simulation of the filling stage. To accurately simulate the preform thickness change and resin flow during resin infusion, precise preform compaction models and dynamically changing geometry models need to be adopted. At present, resin flow is usually considered as two-dimensional and simple compaction models are employed to simplify the simulation, which degrades the prediction accuracy seriously. In this paper, general equations to describe the resin flow in the changing thickness cavity are developed, and the viscoelastic model is adopted which can fully express the dynamic characteristics of the preform compaction. To avoid solving the coupled resin flow/preform deformation equations directly, the volume of fluid method and the dynamic mesh model are employed to implement the tracking of the flow front and updating of cavity geometry model. The resin storage and release induced by porosity variations are adjusted by a master-slave element method to ensure mass conservation. Two simulation examples are carried out to demonstrate the capability of the above approach. The applicability of the approach on arbitrary complex domains and sequential injection strategy is also verified.


Author(s):  
R. T. Durai Prabhakaran ◽  
Aage Lystrup ◽  
Tom Løgstrup Andersen

The composite industry looks toward a new material system (resins) based on thermoplastic polymers for the vacuum infusion process, similar to the infusion process using thermosetting polymers. A large number of thermoplastics are available in the market with a variety of properties suitable for different engineering applications, and few of those are available in a not yet polymerised form suitable for resin infusion. The proper selection of a new resin system among these thermoplastic polymers is a concern for manufactures in the current scenario and a special mathematical tool would be beneficial. In this paper, the authors introduce a new decision making tool for resin selection based on significant attributes. This article provides a broad overview of suitable thermoplastic material systems for vacuum infusion process available in today’s market. An illustrative example—resin selection for vacuum infused of a wind turbine blade—is shown to demonstrate the intricacies involved in the proposed methodology for resin selection.


2019 ◽  
Vol 211 ◽  
pp. 213-220
Author(s):  
Kariappa M. Karumbaiah ◽  
Christoph Kracke ◽  
Mark Battley ◽  
Simon Bickerton ◽  
Tom Allen

Sign in / Sign up

Export Citation Format

Share Document