Enhancement of organoclay on thermal and flame retardant properties of polystyrene/magnesium hydroxide composite

2014 ◽  
Vol 37 (3) ◽  
pp. 746-755 ◽  
Author(s):  
Jichun Liu ◽  
Yanbin Zhang ◽  
Zhuoli Yu ◽  
Weiyuan Yang ◽  
Jie Luo ◽  
...  

Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2107
Author(s):  
Dongwei Yao ◽  
Guangzhong Yin ◽  
Qingqing Bi ◽  
Xu Yin ◽  
Na Wang ◽  
...  

In this study, we selected basalt fiber (BF) as a functional filler to improve the mechanical properties of ethylene vinyl acetate (EVA)-based flame retardant materials. Firstly, BF was modified by grafting γ-aminopropyl triethoxysilane (KH550). Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron microscope (SEM), and energy dispersive X-ray spectroscopy (EDS) were used to comprehensively prove the successful modification of the BF surface. Subsequently, the modified BF was introduced into the EVA/magnesium hydroxide (MH) composites by melt blending. The limiting oxygen index (LOI), UL-94, cone calorimeter test, tensile test, and non-notched impact test were utilized to characterize both the flame retardant properties and mechanical properties of the EVA/MH composites. It was found that the mechanical properties were significantly enhanced without reducing the flame retardant properties of the EVA/MH composites. Notably, the surface treatment with silane is a simple and low-cost method for BF surface modification and the pathway designed in this study can be both practical and effective for polymer performance enhancement.



2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
F. I. Beltrán-Ramírez ◽  
L. F. Ramos-deValle ◽  
E. Ramírez-Vargas ◽  
E. Cabrera-Alvarez ◽  
S. Sánchez-Valdes ◽  
...  

A work was carried out in order to obtain a TPV based on HDPE and EPDM, studying the effect of three different peroxides. The effect of one mono- and two bifunctional peroxides was studied. In general, at equal wt% of peroxide, the bifunctional peroxides produced greater gel content, higher tensile stress, and higher elongation at break. Thereafter, the work was focused on studying the effect of this TPV, as well as a commercial TPO, on the tensile and flame retardant properties of composites based on blends of HDPE and a thermoplastic elastomer (either TPV or TPO), plus 130 phr of magnesium hydroxide (MH). The composites without the rubbery phase, but with 130 phr of MH, were highly brittle and fragile. The composites with the rubbery phase, on the other hand, (either TPO or TPV), were tougher and presented relatively much higher tensile properties. With regard to flame retardancy, the formulations containing the TPV showed better flame retardancy and passed as V-1 in the UL-94V. With respect to the cone calorimeter, those with TPO or TPV all generated a total of 80 MJ of heat energy. The compositions with TPV, however, generated this amount of heat over a larger period of time, i.e., showing less heat generated per second. In addition, the compositions with TPV presented a markedly lower pHRR, by an average of 15%. Thermogravimetric analysis (TGA) showed that the MH in the samples with a 40 wt% rubbery phase starts decomposing at 315°C. However, as the temperature increases, the MH in the TPV composite apparently decomposes at a slower rate than that in the TPO composite.





2017 ◽  
Vol 10 (04) ◽  
pp. 1750042 ◽  
Author(s):  
Hao Tang ◽  
Kunfeng Chen ◽  
Xiaonan Li ◽  
Man Ao ◽  
Xinwen Guo ◽  
...  

Halogen-free and environment-friendly magnesium hydroxide (Mg(OH)2) was synthesized to enhance the flame retardant properties of thermoplastic elastomer (TPE). When the Mg(OH)2 content was optimized to 35[Formula: see text]wt.%, the TPE–Mg(OH)2 composites exhibited the best flame retardant properties. The results showed that there was a delay of ignition time of the samples containing Mg(OH)2; compared with the samples without Mg(OH)2, the heat release rate and total heat release decrease by 31.4% and 35.6%, while total smoke production and mass loss rate reduce by 56% and 34.2%, respectively. This work opens a door to manufacture fire-resistant polymer-based composites with environmental-friendly flame retardant additives by controllable crystallization and chemical strategies.





Sign in / Sign up

Export Citation Format

Share Document