Facile preparation of PLGA microspheres with diverse internal structures by modified double-emulsion method for controlled release

2014 ◽  
Vol 55 (4) ◽  
pp. 896-906 ◽  
Author(s):  
Fengxuan Han ◽  
Fang Zhou ◽  
Xiaoling Yang ◽  
Jin Zhao ◽  
Yunhui Zhao ◽  
...  
Author(s):  
Seema Kohli ◽  
Abhisek Pal ◽  
Suchit Jain

Objective: The purpose of this research work was to develop and evaluate microspheres appropriate for controlled release of zidovudine (AZT).Methods: The AZT loaded polylactide-co-glycolide (PLGA) microspheres were prepared by W/O/O double emulsion solvent diffusion method. Compatibility of drug and polymer was studied by Fourier-transform infrared spectroscopy (FTIR). The influence of formulation factors (drug: polymer ratio, stirring speed, the concentration of surfactant) on particle size encapsulation efficiency and in vitro release characteristics of the microspheres was investigated. Release kinetics was studied and stability study was performed as per ICH guidelines.Results: Scanning electron microscopy (SEM) images show good reproducibility of microspheres from different batches. The average particle size was in the range of 216-306 μm. The drug-loaded microspheres showed 74.42±5.08% entrapment efficiency. The cumulative percentage released in phosphate Buffer solution (PBS) buffer was found to be 55.32±5.89 to 74.42±5.08 %. The highest regressions (0.981) were obtained for zero order kinetics followed by Higuchi (0.968) and first order (0.803).Conclusion: Microsphere prepared by double emulsion solvent diffusion method was investigated and the results revealed that 216-306 μm microsphere was successfully encapsulated in a polymer. FT-IR analysis, entrapment efficiency and SEM Studies revealed the good reproducibility from batch to batch. The microspheres were of an appropriate size and suitable for oral administration. Thus the current investigation show promising results of PLGA microspheres as a matrix for drug delivery and merit for In vivo studies for scale up the technology.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 816
Author(s):  
Yuxuan Ge ◽  
Zhenhua Hu ◽  
Jili Chen ◽  
Yujie Qin ◽  
Fei Wu ◽  
...  

GLP-1 receptor agonists are a class of diabetes medicines offering self-regulating glycemic efficacy and may best be administrated in long-acting forms. Among GLP-1 receptor agonists, exenatide is the one requiring the least dose so that controlled-release poly(d, l-lactic-co-glycolic acid) (PLGA) microspheres may best achieve this purpose. Based on this consideration, the present study extended the injection interval of exenatide microspheres from one week of the current dosage form to four weeks by simply blending Mg(OH)2 powder within the matrix of PLGA microspheres. Mg(OH)2 served as the diffusion channel creator in the earlier stage of the controlled-release period and the decelerator of the self-catalyzed degradation of PLGA (by the formed lactic and glycolic acids) in the later stage due to its pH-responsive solubility. As a result, exenatide gradually diffused from the microspheres through Mg(OH)2-created diffusion channels before degradation of the PLGA matrix, followed by a mild release due to Mg(OH)2-buffered degradation of the polymer skeleton. In addition, an extruding–settling process comprising squeezing the PLGA solution through a porous glass membrane and sedimentation-aided solidification of the PLGA droplets was used to prepare the microspheres to ensure narrow size distribution and 95% encapsulation efficiency in an aqueous continuous phase. A pharmacokinetic study using rhesus monkey model confirmed the above formulation design by showing a steady blood concentration profile of exenatide with reduced CMAX and dosage form index. Mg·(OH)2


2012 ◽  
Vol 466-467 ◽  
pp. 405-410 ◽  
Author(s):  
Z.H. Li ◽  
Ji Min Wu ◽  
Y.L. Zhao ◽  
J. Guan ◽  
S.J. Huang ◽  
...  

The present investigation was aimed at optimization of BMPs loaded PLGA microspheres formulations resulting in improved encapsulation efficiency and sustained release of BMPs by varying the molecular weight and copolymer composition of PLGA. Double-emulsion solvent evaporation method was used to prepare the microspheres. The effect of polymer molecular weight and copolymer composition on particle properties and release behavior in vitro was reported. The particle size and encapsulation efficiency increased with increase in molecular weight and lactide content of PLGA. While BMPs release in vitro decreased with increase in molecular weight and lactide content of PLGA. SEM pictures revealed that almost all microspheres were spherical but internal morphology was different. The morphology of PLGA microspheres with exorbitant molecular weight(100kD) was anomalistic whereas the morphology of PLGA microspheres with higher glycolide content(50) have porous structures.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Neha Atulkumar Singh ◽  
Abul Kalam Azad Mandal ◽  
Zaved Ahmed Khan

The purpose of this study was to develop an oral delivery system for the controlled release of catechin and evaluate the antioxidant potential and stability of catechin loaded PLA/PEG nanoparticles (CATNP). Nanoparticles were synthesized using a double emulsion solvent evaporation method. The fabricated nanoparticles were relatively small with a hydrodynamic diameter of 300 nm and an encapsulation efficiency of 95%. SEM image analysis showed uniform sized and spherically shaped nanoparticles. In vitro release profiles indicated a slow and sustained release of catechin from the nanoparticle. Stability of the nanoparticle in simulated gastric and intestinal fluids is maintained due to the PEG coating on the nanoparticles, which effectively protected catechin against gastrointestinal enzyme activity. Enhanced inhibition action of free radicals and metal chelation potential was noted when catechin was encapsulated in these polymeric nanoparticles. The reports obtained from this study would provide an opportunity for designing an oral delivery system aimed at inhibiting oxidative stress in the human body.


RSC Advances ◽  
2018 ◽  
Vol 8 (6) ◽  
pp. 3274-3285 ◽  
Author(s):  
Zongrui Zhang ◽  
Xinyu Wang ◽  
Binbin Li ◽  
Yuanjing Hou ◽  
Zhengwei Cai ◽  
...  

A novel morphological PTX-PLGA-MS with microporous surface and porous internal structures to enhance drug loading, delivery and antitumor efficiency.


Sign in / Sign up

Export Citation Format

Share Document