zoysia japonica
Recently Published Documents


TOTAL DOCUMENTS

190
(FIVE YEARS 43)

H-INDEX

17
(FIVE YEARS 3)

Horticulturae ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 34
Author(s):  
Young-Sun Kim ◽  
Kyo-Suk Lee ◽  
Hong-Gi Kim ◽  
Geung-Joo Lee

Bacillus subtilis SA-15 is a plant growth-promoting bacterium isolated from non-farming soil. We aimed to identify lipopeptides produced by B. subtilis SA-15 and evaluate the control efficacy of B. subtilis SA-15 against large patch disease caused by Rhizoctonia solani AG 2-2 (IV) in zoysiagrass (Zoysia japonica). Bacillus subtilis SA-15 inhibited mycelial growth of R. solani AG 2-2 (IV) in vitro and produced fengycin A and dehydroxyfengycin A, which are antifungal compounds. Fengycin A and deghydroxyfengycin A inhibited R. solani mycelial growth by 30.4 and 63.2%, respectively. We formulated B. subtilis SA-15 into a wettable powder and determined its control efficiency against large patch in a field trial. The control efficacy was 51.2–92.0%. Moreover, when B. subtilis SA-15 powder was applied together with half the regular dose of the fungicide pecycuron, the control efficacy was 88.5–100.0%. These results indicate that B. subtilis SA-15 can be used to control soil-borne diseases, including large patch caused by R. solani, because of lipopeptide production. The use of this bacterium can also reduce the amount of fungicide needed, providing an eco-friendly management option for turfgrass.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ke Teng ◽  
Yuesen Yue ◽  
Hui Zhang ◽  
Hui Li ◽  
Lixin Xu ◽  
...  

Pheophytinase (PPH), the phytol hydrolase, plays important roles in chlorophyll degradation. Nevertheless, little attention has been paid to the PPHs in warm-season grass species; neither its detailed function in photosynthesis has been systematically explored to date. In this study, we isolated ZjPPH from Zoysia japonica, an excellent warm-season turfgrass species. Quantitative real-time PCR analysis and promoter activity characterization revealed that the expression of ZjPPH could be induced by senescence, ABA, and dark induction. Subcellular localization observation proved that ZjPPH was localized in the chloroplasts. Overexpression of ZjPPH accelerated the chlorophyll degradation and rescued the stay-green phenotype of the Arabidopsis pph mutant. Moreover, ZjPPH promoted senescence with the accumulation of ABA and soluble sugar contents, as well as the increased transcriptional level of SAG12 and SAG14. Transmission electron microscopy investigation revealed that ZjPPH caused the decomposition of chloroplasts ultrastructure in stable transformed Arabidopsis. Furthermore, chlorophyll a fluorescence transient measurement analysis suggested that ZjPPH suppressed photosynthesis efficiency by mainly suppressing both photosystem II (PSII) and photosystem I (PSI). In conclusion, ZjPPH plays an important role in chlorophyll degradation and senescence. It could be a valuable target for genetic editing to cultivate new germplasms with stay-green performance and improved photosynthetic efficiency.


Agriculture ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1200
Author(s):  
Di Zhang ◽  
Hanguo Zeng ◽  
Liyuan Zhao ◽  
Jiaming Yue ◽  
Xiao Qi ◽  
...  

The goal of this study was to identify the zoysiagrass rust pathogens and to analyze the differences in rust-resistant and rust-susceptible Zoysia japonica germplasm upon inoculation. Based on the assessment of spore morphology and 18S ribosomal DNA (rDNA) molecular identification, the zoysiagrass rust pathogen was identified as Puccinia zoysiae Diet. The development of mycelium, the rate of spreading, and the timing of spore production were more delayed in the rust-resistant (RR) genotype than the rust-susceptible (RS) genotype. After inoculation, the activities of superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) initially decreased, then increased in both the RR and RS genotypes, but the increased enzyme activities were faster in the RR than in the RS genotype. Rust resistance was positively correlated with antioxidant enzyme activity. The observed changes in CAT, POD and APX activity corresponded to their gene expression levels. The results of this study may be utilized in accurately evaluating the damage of rust disease and rust-resistance in zoysiagrass germplasm aimed at breeding the rust-resistant zoysiagrass varieties and improving disease management of zoysiagrass turf.


Author(s):  

Abstract A new distribution map is provided for Meloidogyne marylandi Jepson and Golden. Chromodorea: Tylenchida: Meloidogynidae. Hosts: turfgrasses, including Bermuda grass (Cynodon dactylon) and Zoysiagrass (Zoysia japonica). Information is given on the geographical distribution in Asia (Israel, Japan, Kyushu, Korea Republic) and North America (Costa Rica, USA, Arizona, Arkansas, California, Florida, Georgia, Hawaii, Maryland, Nevada, North Carolina, Oklahoma, South Carolina, Tennessee, Texas, Utah).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Di Dong ◽  
Mengdi Wang ◽  
Yinreuizhi Li ◽  
Zhuocheng Liu ◽  
Shuwen Li ◽  
...  

AbstractZoysia japonica is a commonly used turfgrass species around the world. Seed germination is a crucial stage in the plant life cycle and is particularly important for turf establishment and management. Experiments have confirmed that melatonin can be a potential regulator signal in seeds. To determine the effect of exogenous melatonin administration and explore the its potential in regulating seed growth, we studied the concentrations of several hormones and performed a transcriptome analysis of zoysia seeds after the application of melatonin. The total antioxidant capacity determination results showed that melatonin treatment could significantly improve the antioxidant capacity of zoysia seeds. The transcriptome analysis indicated that several of the regulatory pathways were involved in antioxidant activity and hormone activity. The hormones concentrations determination results showed that melatonin treatment contributed to decreased levels of cytokinin, abscisic acid and gibberellin in seeds, but had no significant effect on the secretion of auxin in early stages. Melatonin is able to affect the expression of IAA (indoleacetic acid) response genes. In addition, melatonin influences the other hormones by its synergy with other hormones. Transcriptome research in zoysia is helpful for understanding the regulation of melatonin and mechanisms underlying melatonin-mediated developmental processes in zoysia seeds.


2021 ◽  
pp. 1-10
Author(s):  
Juming Zhang ◽  
Michael Richardson ◽  
Douglas Karcher ◽  
John McCalla ◽  
Jingwen Mai ◽  
...  

Many bermudagrass (Cynodon sp.) and zoysiagrass (Zoysia sp.) cultivars are not available as seed and are commonly planted vegetatively using sprigs, especially for sod production or in sand-based systems. Sprig planting is typically done in late spring or early summer, but this can result in an extended grow-in period and delay the use of the turf in the first growing season. The objective of this study was to determine if sprigs of bermudagrass and zoysiagrass could be planted earlier in the year, during the dormancy phase, to hasten establishment. A field study was carried out in Fayetteville, AR, in 2014 and 2016 using ‘Tifway’ hybrid bermudagrass (Cynodon dactylon × Cynodon transvaalensis) and ‘Meyer’ zoysiagrass (Zoysia japonica), and in Guangzhou, China, in 2015, using ‘Tifway’ hybrid bermudagrass and ‘Lanyin III’ zoysiagrass (Z. japonica). Sprigs were planted in March (dormant), May (spring) and July (summer) in Fayetteville, and in January (dormant), March (spring) and May (summer) in Guangzhou. Sprigging rates of 30, 60, and 90 m3·ha−1 were tested at both locations and across all planting dates. Bermudagrass was less affected by planting date, with dormant, spring or summer plantings effectively establishing full cover in the first growing season. Zoysiagrass that was sprigged in the dormant season was successfully established by the end of the first growing season while a full zoysiagrass cover was not achieved with either spring or summer plantings in Arkansas. Dormant sprigging reached full coverage as fast or faster than traditional spring or summer planting dates at both locations, indicating that bermudagrass and zoysiagrass establishment can be achieved earlier in the growing season using dormant sprigging methods.


Author(s):  
Hong-Gyu Kang ◽  
Ok-Chul Chung ◽  
Tae-Woong Bae ◽  
Hyeon-Jin Sun ◽  
In-Ja Song ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document