Steady state protein levels in Geobacter metallireducens grown with iron (III) citrate or nitrate as terminal electron acceptor

PROTEOMICS ◽  
2007 ◽  
Vol 7 (22) ◽  
pp. 4148-4157 ◽  
Author(s):  
Angela J. Ahrendt ◽  
Sandra L. Tollaksen ◽  
Carl Lindberg ◽  
Wenhong Zhu ◽  
John R. Yates ◽  
...  
2009 ◽  
Vol 75 (11) ◽  
pp. 3641-3647 ◽  
Author(s):  
Gary A. Icopini ◽  
Joe G. Lack ◽  
Larry E. Hersman ◽  
Mary P. Neu ◽  
Hakim Boukhalfa

ABSTRACT We examined the ability of the metal-reducing bacteria Geobacter metallireducens GS-15 and Shewanella oneidensis MR-1 to reduce Pu(VI) and Pu(V). Cell suspensions of both bacteria reduced oxidized Pu [a mixture of Pu(VI) and Pu(V)] to Pu(IV). The rate of plutonium reduction was similar to the rate of U(VI) reduction obtained under similar conditions for each bacteria. The rates of Pu(VI) and U(VI) reduction by cell suspensions of S. oneidensis were slightly higher than the rates observed with G. metallireducens. The reduced form of Pu was characterized as aggregates of nanoparticulates of Pu(IV). Transmission electron microscopy images of the solids obtained from the cultures after the reduction of Pu(VI) and Pu(V) by S. oneidensis show that the Pu precipitates have a crystalline structure. The nanoparticulates of Pu(IV) were precipitated on the surface of or within the cell walls of the bacteria. The production of Pu(III) was not observed, which indicates that Pu(IV) was the stable form of reduced Pu under these experimental conditions. Experiments examining the ability of these bacteria to use Pu(VI) as a terminal electron acceptor for growth were inconclusive. A slight increase in cell density was observed for both G. metallireducens and S. oneidensis when Pu(VI) was provided as the sole electron acceptor; however, Pu(VI) concentrations decreased similarly in both the experimental and control cultures.


2006 ◽  
Vol 188 (2) ◽  
pp. 450-455 ◽  
Author(s):  
Jessica E. Butler ◽  
Richard H. Glaven ◽  
Abraham Esteve-Núñez ◽  
Cinthia Núñez ◽  
Evgenya S. Shelobolina ◽  
...  

ABSTRACT The mechanism of fumarate reduction in Geobacter sulfurreducens was investigated. The genome contained genes encoding a heterotrimeric fumarate reductase, FrdCAB, with homology to the fumarate reductase of Wolinella succinogenes and the succinate dehydrogenase of Bacillus subtilis. Mutation of the putative catalytic subunit of the enzyme resulted in a strain that lacked fumarate reductase activity and was unable to grow with fumarate as the terminal electron acceptor. The mutant strain also lacked succinate dehydrogenase activity and did not grow with acetate as the electron donor and Fe(III) as the electron acceptor. The mutant strain could grow with acetate as the electron donor and Fe(III) as the electron acceptor if fumarate was provided to alleviate the need for succinate dehydrogenase activity in the tricarboxylic acid cycle. The growth rate of the mutant strain under these conditions was faster and the cell yields were higher than for wild type grown under conditions requiring succinate dehydrogenase activity, suggesting that the succinate dehydrogenase reaction consumes energy. An orthologous frdCAB operon was present in Geobacter metallireducens, which cannot grow with fumarate as the terminal electron acceptor. When a putative dicarboxylic acid transporter from G. sulfurreducens was expressed in G. metallireducens, growth with fumarate as the sole electron acceptor was possible. These results demonstrate that, unlike previously described organisms, G. sulfurreducens and possibly G. metallireducens use the same enzyme for both fumarate reduction and succinate oxidation in vivo.


2007 ◽  
Vol 73 (18) ◽  
pp. 5897-5903 ◽  
Author(s):  
Hakim Boukhalfa ◽  
Gary A. Icopini ◽  
Sean D. Reilly ◽  
Mary P. Neu

ABSTRACT The bacterial reduction of actinides has been suggested as a possible remedial strategy for actinide-contaminated environments, and the bacterial reduction of Pu(VI/V) has the potential to produce highly insoluble Pu(IV) solid phases. However, the behavior of plutonium with regard to bacterial reduction is more complex than for other actinides because it is possible for Pu(IV) to be further reduced to Pu(III), which is relatively more soluble than Pu(IV). This work investigates the ability of the metal-reducing bacteria Geobacter metallireducens GS15 and Shewanella oneidensis MR1 to enzymatically reduce freshly precipitated amorphous Pu(IV) (OH)4 [Pu(IV)(OH)4(am)] and soluble Pu(IV)(EDTA). In cell suspensions without added complexing ligands, minor Pu(III) production was observed in cultures containing S. oneidensis, but little or no Pu(III) production was observed in cultures containing G. metallireducens. In the presence of EDTA, most of the Pu(IV)(OH)4(am) present was reduced to Pu(III) and remained soluble in cell suspensions of both S. oneidensis and G. metallireducens. When soluble Pu(IV)(EDTA) was provided as the terminal electron acceptor, cell suspensions of both S. oneidensis and G. metallireducens rapidly reduced Pu(IV)(EDTA) to Pu(III)(EDTA) with nearly complete reduction within 20 to 40 min, depending on the initial concentration. Neither bacterium was able to use Pu(IV) (in any of the forms used) as a terminal electron acceptor to support growth. These results have significant implications for the potential remediation of plutonium and suggest that strongly reducing environments where complexing ligands are present may produce soluble forms of reduced Pu species.


Viruses ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1148
Author(s):  
Fouad S. El-mayet ◽  
Kelly S. Harrison ◽  
Clinton Jones

Expression of Krüppel-like factor 15 (KLF15), a stress-induced transcription factor, is induced during bovine herpesvirus 1 (BoHV-1) reactivation from latency, and KLF15 stimulates BoHV-1 replication. Transient transfection studies revealed that KLF15 and glucocorticoid receptor (GR) cooperatively transactivate the BoHV-1-immediate-early transcription unit 1 (IEtu1), herpes simplex virus type 1 (HSV-1) infected cell protein 0 (ICP0), and ICP4 promoters. The IEtu1 promoter drives expression of bICP0 and bICP4, two key BoHV-1 transcriptional regulatory proteins. Based on these studies, we hypothesized infection is a stressful stimulus that increases KLF15 expression and enhances productive infection. New studies demonstrated that silencing KLF15 impaired HSV-1 productive infection, and KLF15 steady-state protein levels were increased at late stages of productive infection. KLF15 was primarily localized to the nucleus following infection of cultured cells with HSV-1, but not BoHV-1. When cells were transfected with a KLF15 promoter construct and then infected with HSV-1, promoter activity was significantly increased. The ICP0 gene, and to a lesser extent, bICP0 transactivated the KLF15 promoter in the absence of other viral proteins. In contrast, BoHV-1 or HSV-1 encoded VP16 had no effect on KLF15 promoter activity. Collectively, these studies revealed that HSV-1 and BoHV-1 productive infection increased KLF15 steady-state protein levels, which correlated with increased virus production.


2013 ◽  
Vol 1 (24) ◽  
pp. 3816 ◽  
Author(s):  
Hao Zhuang ◽  
Qijian Zhang ◽  
Yongxiang Zhu ◽  
Xufeng Xu ◽  
Haifeng Liu ◽  
...  

2013 ◽  
Vol 63 (Pt_5) ◽  
pp. 1824-1833 ◽  
Author(s):  
Dennis A. Bazylinski ◽  
Timothy J. Williams ◽  
Christopher T. Lefèvre ◽  
Denis Trubitsyn ◽  
Jiasong Fang ◽  
...  

A magnetotactic bacterium, designated strain MV-1T, was isolated from sulfide-rich sediments in a salt marsh near Boston, MA, USA. Cells of strain MV-1T were Gram-negative, and vibrioid to helicoid in morphology. Cells were motile by means of a single polar flagellum. The cells appeared to display a transitional state between axial and polar magnetotaxis: cells swam in both directions, but generally had longer excursions in one direction than the other. Cells possessed a single chain of magnetosomes containing truncated hexaoctahedral crystals of magnetite, positioned along the long axis of the cell. Strain MV-1T was a microaerophile that was also capable of anaerobic growth on some nitrogen oxides. Salinities greater than 10 % seawater were required for growth. Strain MV-1T exhibited chemolithoautotrophic growth on thiosulfate and sulfide with oxygen as the terminal electron acceptor (microaerobic growth) and on thiosulfate using nitrous oxide (N2O) as the terminal electron acceptor (anaerobic growth). Chemo-organoautotrophic and methylotrophic growth was supported by formate under microaerobic conditions. Autotrophic growth occurred via the Calvin–Benson–Bassham cycle. Chemo-organoheterotrophic growth was supported by various organic acids and amino acids, under microaerobic and anaerobic conditions. Optimal growth occurred at pH 7.0 and 26–28 °C. The genome of strain MV-1T consisted of a single, circular chromosome, about 3.7 Mb in size, with a G+C content of 52.9–53.5 mol%.Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain MV-1T belongs to the family Rhodospirillaceae within the Alphaproteobacteria , but is not closely related to the genus Magnetospirillum . The name Magnetovibrio blakemorei gen. nov., sp. nov. is proposed for strain MV-1T. The type strain of Magnetovibrio blakemorei is MV-1T ( = ATCC BAA-1436T  = DSM 18854T).


2018 ◽  
Vol 87 (2) ◽  
Author(s):  
John T. Loh ◽  
Aung Soe Lin ◽  
Amber C. Beckett ◽  
Mark S. McClain ◽  
Timothy L. Cover

ABSTRACTHelicobacter pyloriCagA is a secreted effector protein that contributes to gastric carcinogenesis. Previous studies showed that there is variation amongH. pyloristrains in the steady-state levels of CagA and that a strain-specific motif downstream of thecagAtranscriptional start site (the +59 motif) is associated with both high levels of CagA and premalignant gastric histology. ThecagA5′ untranslated region contains a predicted stem-loop-forming structure adjacent to the +59 motif. In the current study, we investigated the effect of the +59 motif and the adjacent stem-loop oncagAtranscript levels andcagAmRNA stability. Using site-directed mutagenesis, we found that mutations predicted to disrupt the stem-loop structure resulted in decreased steady-state levels of both thecagAtranscript and the CagA protein. Additionally, these mutations resulted in a decreasedcagAmRNA half-life. Mutagenesis of the +59 motif without altering the stem-loop structure resulted in reduced steady-statecagAtranscript and CagA protein levels but did not affectcagAtranscript stability.cagAtranscript stability was not affected by increased sodium chloride concentrations, an environmental factor known to augmentcagAtranscript levels and CagA protein levels. These results indicate that both a predicted stem-loop structure and a strain-specific +59 motif in thecagA5′ untranslated region influence the levels ofcagAexpression.


Sign in / Sign up

Export Citation Format

Share Document