scholarly journals Front Cover: An Integrated Proteomic Approach Uncovers Novel Substrates and Functions of the Lon Protease in Escherichia coli

PROTEOMICS ◽  
2018 ◽  
Vol 18 (13) ◽  
pp. 1870111
Author(s):  
Jan Arends ◽  
Marcena Griego ◽  
Nikolas Thomanek ◽  
Claudia Lindemann ◽  
Blanka Kutscher ◽  
...  
2020 ◽  
Vol 8 (11) ◽  
pp. 1662
Author(s):  
Zachary R. Stromberg ◽  
Rick E. Masonbrink ◽  
Melha Mellata

Foodborne pathogens are a public health threat globally. Shiga toxin-producing Escherichia coli (STEC), particularly O26, O111, and O157 STEC, are often associated with foodborne illness in humans. To create effective preharvest interventions, it is critical to understand which factors STEC strains use to colonize the gastrointestinal tract of cattle, which serves as the reservoir for these pathogens. Several colonization factors are known, but little is understood about initial STEC colonization factors. Our objective was to identify these factors via contrasting gene expression between nonpathogenic E. coli and STEC. Colonic explants were inoculated with nonpathogenic E. coli strain MG1655 or STEC strains (O26, O111, or O157), bacterial colonization levels were determined, and RNA was isolated and sequenced. STEC strains adhered to colonic explants at numerically but not significantly higher levels compared to MG1655. After incubation with colonic explants, flagellin (fliC) was upregulated (log2 fold-change = 4.0, p < 0.0001) in O157 STEC, and collectively, Lon protease (lon) was upregulated (log2 fold-change = 3.6, p = 0.0009) in STEC strains compared to MG1655. These results demonstrate that H7 flagellum and Lon protease may play roles in early colonization and could be potential targets to reduce colonization in cattle.


PROTEOMICS ◽  
2018 ◽  
Vol 18 (13) ◽  
pp. 1800080 ◽  
Author(s):  
Jan Arends ◽  
Marcena Griego ◽  
Nikolas Thomanek ◽  
Claudia Lindemann ◽  
Blanka Kutscher ◽  
...  

1989 ◽  
Vol 171 (6) ◽  
pp. 3348-3353 ◽  
Author(s):  
J E Trempy ◽  
S Gottesman

1990 ◽  
Vol 172 (12) ◽  
pp. 7098-7103 ◽  
Author(s):  
E Dervyn ◽  
D Canceill ◽  
O Huisman

Microbiology ◽  
2004 ◽  
Vol 150 (2) ◽  
pp. 437-446 ◽  
Author(s):  
Mei-Shiue Kuo ◽  
Kuei-Peng Chen ◽  
Whi Fin Wu

Escherichia coli ClpYQ protease and Lon protease possess a redundant function for degradation of SulA, a cell division inhibitor. An experimental cue implied that the capsule synthesis activator RcsA, a known substrate of Lon, is probably a specific substrate for the ClpYQ protease. This paper shows that overexpression of ClpQ and ClpY suppresses the mucoid phenotype of a lon mutant. Since the cpsB (wcaB) gene, involved in capsule synthesis, is activated by RcsA, the reporter construct cpsB–lacZ was used to assay for β-galactosidase activity and thus follow RcsA stability. The expression of cpsB–lacZ was increased in double mutants of lon in combination with clpQ or/and clpY mutation(s) compared with the wild-type or lon single mutants. Overproduction of ClpYQ or ClpQ decreased cpsB–lacZ expression. Additionally, a PBAD–rcsA fusion construct showed quantitatively that an inducible RcsA activates cpsB–lacZ expression. The effect of RcsA on cpsB–lacZ expression was shown to be influenced by the ClpYQ activities. Moreover, a rcsA Red –lacZ translational fusion construct showed higher activity of RcsARed–LacZ in a clpQ clpY strain than in the wild-type. By contrast, overproduction of cellular ClpYQ resulted in decreased β-galactosidase levels of RcsARed–LacZ. Taken together, the data indicate that ClpYQ acts as a secondary protease in degrading the Lon substrate RcsA.


2001 ◽  
Vol 183 (7) ◽  
pp. 2343-2347 ◽  
Author(s):  
Jörgen Johansson ◽  
Sven Eriksson ◽  
Berit Sondén ◽  
Sun Nyunt Wai ◽  
Bernt Eric Uhlin

ABSTRACT The nucleoid-associated proteins H-NS and StpA inEscherichia coli bind DNA as oligomers and are implicated in gene regulatory systems. There is evidence for both homomeric and heteromeric H-NS–StpA complexes. The two proteins show differential turnover, and StpA was previously found to be subject to protease-mediated degradation by the Lon protease. We investigated which regions of the H-NS protein are able to prevent degradation of StpA. A set of truncated H-NS derivatives was tested for their ability to mediate StpA stability and to form heteromers in vitro. The data indicate that H-NS interacts with StpA at two regions and that the presence of at least one of the H-NS regions is necessary for StpA stability. Our results also suggest that a proteolytically stable form of StpA, StpAF21C, forms dimers, whereas wild-type StpA in the absence of H-NS predominantly forms tetramers or oligomers, which are more susceptible to proteolysis.


2018 ◽  
Vol 11 (9) ◽  
pp. e201870157
Author(s):  
Yanpeng Li ◽  
Hui Ma ◽  
Lin Gan ◽  
Andong Gong ◽  
Haibin Zhang ◽  
...  

2004 ◽  
Vol 70 (9) ◽  
pp. 5274-5282 ◽  
Author(s):  
M. Li ◽  
I. Rosenshine ◽  
S. L. Tung ◽  
X. H. Wang ◽  
D. Friedberg ◽  
...  

ABSTRACT Enterohemorrhagic and enteropathogenic Escherichia coli (EHEC and EPEC, respectively) strains are closely related human pathogens that are responsible for food-borne epidemics in many countries. Integration host factor (IHF) and the locus of enterocyte effacement-encoded regulator (Ler) are needed for the expression of virulence genes in EHEC and EPEC, including the elicitation of actin rearrangements for attaching and effacing lesions. We applied a proteomic approach, using two-dimensional polyacrylamide gel electrophoresis in combination with matrix-assisted laser desorption ionization-time of flight mass spectrometry and a protein database search, to analyze the extracellular protein profiles of EHEC EDL933, EPEC E2348/69, and their ihf and ler mutants. Fifty-nine major protein spots from the extracellular proteomes were identified, including six proteins of unknown function. Twenty-six of them were conserved between EHEC EDL933 and EPEC E2348/69, while some of them were strain-specific proteins. Four common extracellular proteins (EspA, EspB, EspD, and Tir) were regulated by both IHF and Ler in EHEC EDL933 and EPEC E2348/69. TagA in EHEC EDL933 and EspC and EspF in EPEC E2348/69 were present in the wild-type strains but absent from their respective ler and ihf mutants, while FliC was overexpressed in the ihf mutant of EPEC E2348/69. Two dominant forms of EspB were found in EHEC EDL933 and EPEC E2348/69, but the significance of this is unknown. These results show that proteomics is a powerful platform technology for accelerating the understanding of EPEC and EHEC pathogenesis and identifying markers for laboratory diagnoses of these pathogens.


Sign in / Sign up

Export Citation Format

Share Document