Effect of arrangement of nano and micro barium titanate (BaTiO3 ) particles on the enhanced dielectric constant of high-density polyethylene (HDPE)/BaTiO3

2018 ◽  
Vol 56 (15) ◽  
pp. 1101-1108 ◽  
Author(s):  
Jun Su ◽  
Jun Zhang
Author(s):  
Majeed Ali Habeeb ◽  
Ahmed Hamza Abbas

In the present work, Polypropylene (PP) was blended with poly methyl methacrylate (PMMA) to form (PP/PMMA) polymer blends. High Density Polyethylene (HDPE) was mixed into these blends at different weight fractions (2,4,6,8) % wt to form (PP/PMMA/HDPE) blends were prepared using an one screw extruder. results obtained from Scanning Electron Microscopy (SEM) revealed that there was a reduction in surface roughness any decrease in clusters, drilling and bends, as for Fourier Transform Infrared (FT-IR) spectrometry showed no change in the wave numbers of the functional groups. The optical properties of samples are investigated by measuring optical absorption spectra in the wavelength range from 260 to 1100 nm. this results show that Eg of the blends increases with increasing high density polyethylene contents, the indirect optical band gaps for (PP/PMMA) and (PP/PMMA/HDPE) blends were estimated to be about 2.83,2.9,2.95,3and 3.1 eV for indirect allowed transitions, whereas the indirect forbidden band gaps were determined as 2,2.1,2.15,2.2 and 2.3 eV with increase high density Polyethylene contents, respectively. The absorbance, absorption coefficient, extinction coefficient and the imaginary dielectric constant of (PP/PMMA/HDPE) decreases with increasing of HDPE percentages except the transmittance, refraction index and real part of the dielectric constant increase with increasing of high density polyethylene.


2003 ◽  
Vol 774 ◽  
Author(s):  
Susan M. Rea ◽  
Serena M. Best ◽  
William Bonfield

AbstractHAPEXTM (40 vol% hydroxyapatite in a high-density polyethylene matrix) and AWPEX (40 vol% apatite-wollastonite glass ceramic in a high density polyethylene matrix) are composites designed to provide bioactivity and to match the mechanical properties of human cortical bone. HAPEXTM has had clinical success in middle ear and orbital implants, and there is great potential for further orthopaedic applications of these materials. However, more detailed in vitro investigations must be performed to better understand the biological interactions of the composites and so the bioactivity of each material was assessed in this study. Specifically, the effects of controlled surface topography and ceramic filler composition on apatite layer formation in acellular simulated body fluid (SBF) with ion concentration similar to those of human blood plasma were examined. Samples were prepared as 1 cm × 1 cm × 1 mm tiles with polished, roughened, or parallel-grooved surface finishes, and were incubated in 20 ml of SBF at 36.5 °C for 1, 3, 7, or 14 days. The formation of a biologically active apatite layer on the composite surface after immersion was demonstrated by thin-film x-ray diffraction (TF-XRD), environmental scanning electron microscopy (ESEM) imaging and energy dispersive x-ray (EDX) analysis. Variations in sample weight and solution pH over the period of incubation were also recorded. Significant differences were found between the two materials tested, with greater bioactivity in AWPEX than HAPEXTM overall. Results also indicate that within each material the surface topography is highly important, with rougher samples correlated to earlier apatite formation.


Sign in / Sign up

Export Citation Format

Share Document