ir spectrometry
Recently Published Documents


TOTAL DOCUMENTS

270
(FIVE YEARS 40)

H-INDEX

24
(FIVE YEARS 1)

2021 ◽  
Vol 64 (1) ◽  
Author(s):  
Seung-Su Lee ◽  
Hyoung-Geun Kim ◽  
Eun-Ha Park ◽  
Kwang Joong Kim ◽  
Myun-Ho Bang ◽  
...  

AbstractAll parts of Thanakha (Hesperethusa crenulata R.) have been used as traditional skin care herbal material in Myanmar. In this study, coumarins from H. crenulata R. bark were isolated through solvent extraction, systematic solvent fractionation, and repeated column chromatography. Spectroscopic analyses using ESI–MS, 1D NMR (1H and 13C), 2D NMR (gHSQC and gHMBC), specific rotation, circular dichroism, and IR spectrometry revealed three coumarins 2R-7-hydroxy-8-(2,3-dihydroxy-3-methylbutyl)-coumarin (compound 1), peucedanol (compound 2), and methylpeucedanol (compound 3), which were first isolated from Thanakha tree. Antioxidant capacities of three coumarins decreased as follows: compound 2 > compound 3 > compound 1. Treatments of lipopolysaccharide-induced THP-1 human monocytic cells with compounds 2 and 3 at 378.8 μM and 359.7 μM inhibited tumor necrosis factor-α production by approximately 32.7% and 13.3%, respectively, compared with the negative control. In summary, these results suggest that Thanakha bark extracts can be used as a potent antioxidant and anti-inflammatory source for cosmetic ingredients.


2021 ◽  
Vol 8 (4) ◽  
pp. 20218404
Author(s):  
Alena I. Siutkina ◽  
Ramiz R. Makhmudov ◽  
Daria A. Shipilovskikh

The synthesis of new derivatives of 2-[(1,4-dioxo-1-amino-4-arylbutyl-2-en-2-yl)amino]-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxylic acid is described. Starting 2-{[5-aryl-2-oxofuran-3(2H)-ylidene]amino}thiophene-3-carboxylic acids were obtained by intramolecular cyclisation of substituted 4-aryl-4-oxo-2-thienylaminobut-2-enoic acids in acetic anhydride. New derivatives of 2-[(1,4-dioxo-1-amino-4-arylbutyl-2-en-2-yl)amino]-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxylic acids were obtained via decyclization reaction of 2-{[5-aryl-2-oxofuran-3(2H)-ylidene]amino}thiophene-3-carboxylic acids. The structure of the compounds obtained was confirmed by the 1H and 13C NMR spectroscopy, IR spectrometry and elemental analysis methods. Analgesic activity of new compounds has been studied by the “hot plate” method on outbred white mice of both sexes with intraperitoneal injection. It was found that derivatives of 2-[(1,4-dioxo-1-amino-4-arylbutyl-2-en-2-yl)amino]-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxylic acid possess analgesic effect exceeding the effect of the comparison drug metamizole.


Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5543
Author(s):  
Tomasz Kalak ◽  
Jakub Walczak ◽  
Malgorzata Ulewicz

Post-production waste generated in the brewing industry was used to analyze the possibility of Cd(II) ion recovery in biosorption processes. Brewer’s grains (BG), which are waste products from beer manufacturing processes, are a promising material that can be reused for biosorption. The biomass contains appropriate functional groups from fats, proteins, raw fibers, amino acids, carbohydrates and starch, showing a strong affinity for binding metal ions and their removal from wastewater. The biosorbent material was characterized by several research methods, such as particle size distribution, elemental composition and mapping using SEM-EDX analysis, specific surface area and pore volume (BET, BJH), thermogravimetry, electrokinetic zeta potential, SEM morphology and FT-IR spectrometry. Initial and equilibrium pH, adsorbent dosage, initial metal concentration and contact time were parameters examined in the research. The highest biosorption efficiency was obtained at a level of 93.9%. Kinetics analysis of the processes and sorption isotherms were also carried out. Based on the conducted experiments, it was found that this material has binding properties in relation to Cd(II) ions and can be used for wastewater treatment purposes, being a low-cost biosorbent. This research studies are in line with current global trends of circular and sustainable economies.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4545
Author(s):  
Yu-Wen Wang ◽  
Ya-Na Li ◽  
Qin-Bao Lin ◽  
Xiao Wang ◽  
Zeng-Hui Li ◽  
...  

In this study, we prepared new antioxidant active plastic bottle caps by incorporating butylated hydroxyanisole (BHA) or butylated hydroxytoluene (BHT) and 2% (w/w) white masterbatch in high-density polyethylene (HDPE). Fourier-transform infrared (FT-IR) spectrometry revealed that the antioxidants and HDPE were uniformly mixed with noncovalent bonding. In addition, the differential scanning calorimetry (DSC) test revealed that the change in melting point and initial extrapolation temperature of the antioxidant active caps was not significant. Sensory evaluation and removal torque tests validated the suitability of the antioxidant active plastic bottle caps in industrial application. The antioxidant activity increased with a greater concentration of BHA and BHT incorporated in both antioxidant active caps (p < 0.05) and with more impact on the BHA cap compared to BHT cap in terms of antioxidant activity. Migration experiments for 10 days at 40 °C and 2 h at 70 °C showed that active antioxidants in the plastic bottle cap were more easily released into fatty foods and milk products that are highly sensitive to oxidation, and the migration of BHA and BHT did not exceed the maximum amount specified in (EC) No 1333/2008 (<200 mg/kg). As such, the antioxidant active plastic bottle caps inhibited oxidation, thereby ensuring higher food quality.


2021 ◽  
Vol 14 (6) ◽  
pp. 4355-4374
Author(s):  
Alexandra J. Boris ◽  
Satoshi Takahama ◽  
Andrew T. Weakley ◽  
Bruno M. Debus ◽  
Stephanie L. Shaw ◽  
...  

Abstract. Organic species within atmospheric particles vary widely in molecular structure. The variety of molecules that comprise the aerosol make it rich in information about its sources and chemical life cycle but also make particulate organic matter (OM) difficult to characterize and quantify. In Part 1 of this pair of papers, we described a direct method for measuring the composition and concentrations of OM in aerosol samples that is compatible with routine monitoring of air quality. This method uses Fourier transform infrared (FT-IR) spectrometry of filter-based aerosol samples to quantify bonds, or functional groups, that represent the majority of organic composition. Summation of these functional groups gives OM. In this paper, functional group and OM concentrations are directly measured in 8 years of aerosol samples collected at two rural and two urban sites in the Southeastern Aerosol Research and Characterization (SEARCH) network. FT-IR spectrometry with a multivariate calibration is used to quantify the concentrations of aliphatic C−H (aCH), carboxylic acid (COOH), oxalate (oxOCO; representing carboxylates), non-acid and non-oxalate carbonyl (naCO), and alcohol O−H (aCOH) in approximately 3500 filter samples collected every third day from 2009 through 2016. In addition, measurements are made on samples from all days in 2016. To the best of our knowledge, this is the longest time period over which this type of analysis has been applied, and this work also demonstrates the application of a more chemically complete and less destructive method than in prior work using alternate techniques. A decline in the total OM is observed from 2011 to 2016 due to a decrease in the more oxygenated functional groups (carboxylic acid and oxalate) and is attributed to anthropogenic SO2 and/or volatile organic compound (VOC) emissions reductions. The trend in OM composition is consistent with those observed using more time- and labor-intensive analytical techniques. Concurrently, the fractional contributions of aCOH and naCO to OM increased, which might be linked to monoterpene-derived secondary OM, with plausible influences from decreasing NOx and/or increasing O3 concentrations. In addition, this work demonstrates that OM to organic carbon (OM/OC) ratios in the southeastern US (SE US) did not appreciably change over the study time period as a result of these competing functional group contributions to OM. Monthly observations support the sources suggested by these overall trends, including evidence of strong biogenic and photo-oxidation influences. Daily samples from 2016 further elucidate the consistent impact of meteorology and biomass burning events on shorter-term OM variability, including prescribed burning in the winter or spring and wildfires in the autumn, although these sources did not appear to be strong contributors to long-term OM or composition trends in the SE US. These shorter-term and spatial observations reinforce the results of the broader dataset and serve to evaluate the applicability of FT-IR spectrometry measurement to trends analysis on various timescales relevant to routine monitoring of aerosol composition.


2021 ◽  
Author(s):  
Alexandra J. Boris ◽  
Satoshi Takahama ◽  
Andrew T. Weakley ◽  
Bruno M. Debus ◽  
Stephanie L. Shaw ◽  
...  

Abstract. Organic species within atmospheric particles vary widely in molecular structure. The variety of molecules that comprise the aerosol make it rich in information about its sources and chemical lifecycle but also make particulate organic matter (OM) difficult to characterize and quantify. In Part 1 of this pair of papers, we described a direct method for measuring the composition and concentration of OM in aerosol samples that is compatible with routine monitoring of air quality. This method uses Fourier Transform Infrared (FT-IR) spectrometry of filter-based aerosol samples to quantify bonds, or functional groups, that represent the majority of organic composition; summation of these functional groups gives OM. In this paper, functional group composition and OM concentrations are directly measured in eight years of aerosol samples collected at two rural and two urban sites in the Southeastern Aerosol Research and Characterization (SEARCH) network. FT-IR spectrometry with a multivariate calibration is used to quantify the concentrations of aliphatic C-H (aCH), carboxylic acid (COOH), oxalate (oxOCO; representing carboxylates), non-acid and non-oxalate carbonyl (naCO), and alcohol O-H (aCOH) in approximately 3500 filter samples collected every third day from 2009 through 2016. In addition, measurements are made on samples from all days in 2016. A decline in the total OM is observed from 2011 to 2016 that is caused by decreases in the more oxygenated functional groups (carboxylic acid and oxalate) and is attributed to anthropogenic SO2 and/or volatile organic compound (VOC) emissions reductions. The trend in OM composition is consistent with those observed using more time- and labor-intensive analytical techniques. Concurrently, the fractional contributions of aCOH and naCO to OM increased, which might be linked to monoterpene-derived secondary OM, with possible influences from decreasing NOx and/or increasing O3 concentrations. In addition, this work demonstrates that OM to organic carbon (OM / OC) ratios in the Southeast U.S. (SE U.S.) did not appreciably change over the study time period, as a result of these competing functional group contributions to OM. Monthly observations support the sources suggested by these overall trends, including strong biogenic and photo-oxidation influences, while daily samples from 2016 further elucidate the consistent impact of meteorology and biomass burning events on shorter term OM variability, including prescribed burning in the winter/spring and wildfires in the autumn. These shorter-term and spatial observations thus reinforce the results of the broader dataset and serve to evaluate the applicability of FT-IR spectrometry measurement to trends analysis on various timescales relevant to routine monitoring of aerosol composition.


2021 ◽  
Vol 37 (3) ◽  
pp. 75-84
Author(s):  
A.N. Kovalev ◽  
Yu.M. Pozdnyakova ◽  
R.V. Esipenko

Methods have been developed for obtaining polyfunctional preparations of various degrees of purification from rhopilema jellyfish in the form of collagen and proteoglycane complexes, and their safety for the external use has been assessed. In our study, we used HPLC, SDS-PAGE and IR spectroscopy. The composition (proteins, including collagen, amino acids and carbohydrates) and properties of the obtained preparations were determined. The structure of collagen as a part of the isolated complexes was analyzed, and the degree of preservation of its tertiary structure was shown. Changes in the molecular weight distribution of protein fractions were established for different methods of isolation of the substances. The safety of external use of the obtained drugs was analyzed in terms of acute toxicity, skin irritant and sensitizing action in accordance with the requirements for toxicological studies of ingredients of cosmetics in an experiment on test animals. jellyfish ropilema, collagen, electrophoresis, IR spectroscopy, toxicity, skin irritant effect The authors express their gratitude to P. A. Zadorozhny, Senior Researcher of the Laboratory of Molecular and Elemental Analysis of the Institute of Chemistry, Far Eastern Branch of the Russian Academy of Sciences, for conducting IR spectrometry. The authors are also grateful to O. B. Romanova (Deputy Chief Physician), E. G. Land (Doctor for Sanitary and Hygienic Laboratory Studies), O. A. Stroeva (Biologist of the Vivarium) and G. P. Prikhodko (Veterinarian of the Vivarium), employees of the Center for Hygiene and Epidemiology in Primorsky Krai, for conducting toxicological tests.


Author(s):  
P.M. Matyaqubova ◽  
B.X. Ametova ◽  
N.A. Djumaniyazova ◽  
A.B. Usnatdinov ◽  
Sh.B. Kuatova

2021 ◽  
Vol 336 ◽  
pp. 01013
Author(s):  
Nikolay Ivanovich Polushin ◽  
Alexander Ivanovich Laptev ◽  
Mariya Stanislavovna Shitareva ◽  
Dmitry Sergeevich Muratov ◽  
Anatoly Lvovich Maslov ◽  
...  

For the work results correct interpretation, it is important to study initial materials that scientists have to deal with. Currently, there are a large number of different diamond substrates. Comparison of materials among themselves allows you to determine which material you are dealing with. In this work, the methods of infrared (IR) spectrometry, Raman spectroscopy and spectrophotometry are used to study four types of diamond materials: diamond polycrystalline CVD-films; natural single-crystal diamonds; synthetic polycrystalline HPHT-diamonds (such as DSPC – diamond synthetic polycrystal by GOST 9206-80); polycrystalline CVD-diamonds CDM manufactured by E6. In work it was shown that the Raman spectroscopy allows to measure the effect of heat treatment on changes in the diamond structure, even if it is such highly advanced diamond materials as natural diamonds. Heat treatment affects the perfection of diamond crystal structure by reducing stresses and the number of defects in it due to graphitization process. The IR spectrometry method is effective for determining the shape and amount of nitrogen inclusions in diamond structure. To study polycrystalline CVD-films, the spectrophotometry method turned out to be the most effective, because it made possible to determine a small number of nitrogen defects and draw conclusions about the quality of the films. The investigation of polycrystalline diamonds CDM and DSPC demonstrated that, despite their coarse-crystalline structure, diamond crystallites consist of a highly defective diamond phase; in addition, DSPC-diamonds were studied using this method in the first time.


Sign in / Sign up

Export Citation Format

Share Document