A structural criterion for simulation of optimalion‐stimulated plasma growth of chained carbon

Author(s):  
Evgeny Buntov ◽  
Kirill Arslanov
Keyword(s):  
Author(s):  
Ilya V. Rogachevskii ◽  
Vera B. Plakhova ◽  
Valentina A. Penniyaynen ◽  
Stanislav G. Terekhin ◽  
Svetlana A. Podzorova ◽  
...  

A gamma-pyrone derivative, comenic acid, activates the opioid-like receptor-mediated signaling pathway that modulates the NaV1.8 channels in the primary sensory neuron membrane. These channels are responsible for generation of the nociceptive signal; gamma-pyrones can therefore have a great therapeutic potential as analgesics, and this effect deserves a deeper understanding. The novelty of our approach to the design of a medicinal substance is based on a combination of the data obtained on living neurons using very sensitive physiological methods and the results of quantum-chemical calculations. This approach allows to correlate the molecular structure of gamma-pyrones with their ability to evoke a physiological response of the neuron. Comenic acid can bind two calcium cations. One of them is chelated by the carbonyl and the hydroxyl functional groups, while another one forms the salt bond with the carboxylate anion. Calcium-bound gamma-pyrones are fundamentally different in electrostatic properties from the free gamma-pyrone molecules. These two calcium ions are the key elements involved in ligand-receptor binding. It is very likely ion-ionic interactions between these cations and anionic functional groups of the opioid-like receptor that activate the latter. The calculated intercationic distance of 9.5 Å is a structural criterion for effective ligand-receptor binding of calcium-bound gamma-pyrones.


2018 ◽  
Vol 64 (4) ◽  
pp. 155-170
Author(s):  
R. Nagórski

AbstractA review of mechanical models of road pavements in the form of a proposal of classification of these models is presented. It is assumed an autonomy of the following elements of pavement model: the models of structural layers, the subgrade model, the interlayer bonding models, including bonding of pavement structure with its subgrade, the models of external impacts on pavement layers, including load of heavy traffic, the models of pavement environment impacts on structural layers’ borders (lateral) and subgrade borders (including the lower one) – according to the selected criteria such as structural criterion, material criterion (physical criterion), dimension criterion and model scope (purpose) criterion − in the frame of assumptions of the classical Newtonian deterministic mechanics. The presented attempt to classify mechanical models of road pavements supports to orientate the roadmen community within a scope of the mechanistic modelling of these structures.


2003 ◽  
Vol 125 (42) ◽  
pp. 12945-12952 ◽  
Author(s):  
F. Albert Cotton ◽  
Naresh S. Dalal ◽  
Chun Y. Liu ◽  
Carlos A. Murillo ◽  
J. Micah North ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document