scholarly journals The active role of organic molecules in the formation of long‐lived reactive oxygen and nitrogen species in plasma‐treated water solutions

Author(s):  
Valeria Veronico ◽  
Pietro Favia ◽  
Francesco Fracassi ◽  
Roberto Gristina ◽  
Eloisa Sardella
2020 ◽  
Vol 16 (3) ◽  
pp. 265-283
Author(s):  
Kyriaki Hatziagapiou ◽  
George I. Lambrou

Background: Reactive oxygen species and reactive nitrogen species, which are collectively called reactive oxygen nitrogen species, are inevitable by-products of cellular metabolic redox reactions, such as oxidative phosphorylation in the mitochondrial respiratory chain, phagocytosis, reactions of biotransformation of exogenous and endogenous substrata in endoplasmic reticulum, eicosanoid synthesis, and redox reactions in the presence of metal with variable valence. Among medicinal plants there is a growing interest in Crocus sativus L. It is a perennial, stemless herb, belonging to Iridaceae family, cultivated in various countries such as Greece, Italy, Spain, Israel, Morocco, Turkey, Iran, India, China, Egypt and Mexico. Objective: The present study aims to address the anti-toxicant role of Crocus sativus L. in the cases of toxin and drug toxification. Materials and Methods: An electronic literature search was conducted by the two authors from 1993 to August 2017. Original articles and systematic reviews (with or without meta-analysis), as well as case reports were selected. Titles and abstracts of papers were screened by a third reviewer to determine whether they met the eligibility criteria, and full texts of the selected articles were retrieved. Results: The authors focused on literature concerning the role of Crocus Sativus L. as an anti-toxicant agent. Literature review showed that Saffron is a potent anti-toxicant agent with a plethora of applications ranging from anti-oxidant properties, to chemotherapy protective effects. Conclusion: Literature findings represented in current review herald promising results for using Crocus Sativus L. and/or its active constituents as anti-toxicant, chemotherapy-induced protection and toxin protection.


2006 ◽  
Vol 40 (3) ◽  
pp. 263-272 ◽  
Author(s):  
PŘEMYSL MLADĚNKA ◽  
TOMÁŠ ŠIMŮNEK ◽  
MOJMÍR HÜBL ◽  
RADOMÍR HRDINA

PLoS ONE ◽  
2012 ◽  
Vol 7 (11) ◽  
pp. e49209 ◽  
Author(s):  
Amy Barton Pai ◽  
Heena Patel ◽  
Alexander J. Prokopienko ◽  
Hiba Alsaffar ◽  
Nancy Gertzberg ◽  
...  

2011 ◽  
Vol 45 (2) ◽  
pp. 323-331 ◽  
Author(s):  
Heidi C. O'Neill ◽  
David J. Orlicky ◽  
Tara B. Hendry-Hofer ◽  
Joan E. Loader ◽  
Brian J. Day ◽  
...  

2007 ◽  
Vol 102 (4) ◽  
pp. 1664-1670 ◽  
Author(s):  
Malcolm J. Jackson ◽  
Deborah Pye ◽  
Jesus Palomero

Skeletal muscle has been recognized as a potential source for generation of reactive oxygen and nitrogen species for more than 20 years. Initial investigations concentrated on the potential role of mitochondria as a major source for generation of superoxide as a “by-product” of normal oxidative metabolism, but recent studies have identified multiple subcellular sites, where superoxide or nitric oxide are generated in regulated and controlled systems in response to cellular stimuli. Full evaluation of the factors regulating these processes and the functions of the reactive oxygen species generated are important in understanding the redox biology of skeletal muscle.


Sign in / Sign up

Export Citation Format

Share Document