epithelial injury
Recently Published Documents


TOTAL DOCUMENTS

346
(FIVE YEARS 76)

H-INDEX

44
(FIVE YEARS 5)

Author(s):  
Masamichi Fukuda ◽  
Nobuo Takeda ◽  
Hidetoshi Ishida ◽  
Yusuke Seki ◽  
Naoko Shibata ◽  
...  

2021 ◽  
Vol 219 (2) ◽  
Author(s):  
Levi Hoste ◽  
Lisa Roels ◽  
Leslie Naesens ◽  
Victor Bosteels ◽  
Stijn Vanhee ◽  
...  

In rare instances, pediatric SARS-CoV-2 infection results in a novel immunodysregulation syndrome termed multisystem inflammatory syndrome in children (MIS-C). We compared MIS-C immunopathology with severe COVID-19 in adults. MIS-C does not result in pneumocyte damage but is associated with vascular endotheliitis and gastrointestinal epithelial injury. In MIS-C, the cytokine release syndrome is characterized by IFNγ and not type I interferon. Persistence of patrolling monocytes differentiates MIS-C from severe COVID-19, which is dominated by HLA-DRlo classical monocytes. IFNγ levels correlate with granzyme B production in CD16+ NK cells and TIM3 expression on CD38+/HLA-DR+ T cells. Single-cell TCR profiling reveals a skewed TCRβ repertoire enriched for TRBV11-2 and a superantigenic signature in TIM3+/CD38+/HLA-DR+ T cells. Using NicheNet, we confirm IFNγ as a central cytokine in the communication between TIM3+/CD38+/HLA-DR+ T cells, CD16+ NK cells, and patrolling monocytes. Normalization of IFNγ, loss of TIM3, quiescence of CD16+ NK cells, and contraction of patrolling monocytes upon clinical resolution highlight their potential role in MIS-C immunopathogenesis.


2021 ◽  
Author(s):  
Rana AL-Zaidi ◽  
Nasir AL-Noor ◽  
Adel Habbash

Abstract The ongoing novel coronavirus disease 2019 (COVID-19) is principally defined by its respiratory symptoms. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can affect the gastrointestinal tract (GIT) and although the pathogenesis of COVID-19 is understood, the exact pathological alterations following infection require further investigation. Here, we report our histopathological findings from a right hemicolectomy specimen from a patient coinfected with COVID-19 and Mycobacterium tuberculosis. Our observations showed that the novel SARS-CoV-2 can affect the GIT, causing epithelial injury and pathological alterations attributed to its ability to infect absorptive enterocytes by interacting with the angiotensin converting enzyme-2 (ACE2) receptor. These pathological findings are regarded as viral cytopathic changes and should be considered when evaluating gastrointestinal specimens from COVID-19-infected patients.


2021 ◽  
pp. 096032712110594
Author(s):  
Xin Tang ◽  
Zhenyu Li ◽  
Zhi Yu ◽  
Jinna Li ◽  
Jinbang Zhang ◽  
...  

Cigarette smoke (CS)-caused ferroptosis was involved in the pathogenesis of COPD, but the role of ferroptosis in lung epithelial injury and inflammation is not clear. Rats were treated with CS or CUR and BEAS-2B cells were exposed to CS extract (CSE), ferrostatin-1 (Fer-1), deferoxamine (DFO), or CUR to detect reactive oxygen species (ROS) accumulation, lipid peroxidation, iron overload, and ferroptosis-related protein, which were the characteristic changes of ferroptosis. Compared with the control group, CSE-treated BEAS-2B cells had more cell death, higher cytotoxicity, and lower cell viability. The infiltration of inflammatory cell around the bronchi in the CS group of rats was more than that in the normal group. Meanwhile, CSE/CS elevated the levels of interleukin-6 and tumor necrosis factor-α in BEAS-2B cells and bronchoalveolar lavage fluid of rats. Besides, accumulative ROS and depleted glutathione was observed in vitro. In BEAS-2B cells and lung tissues of rats, CSE/CS increased malondialdehyde and iron; down-regulated solute carrier family 7, glutathione peroxidase 4, and ferritin heavy chain levels; and up-regulated transferrin receptor level. These changes were rescued by pretreatment of Fer-1 or DFO in vitro, and mitigated by CUR in vitro and in vivo. Collectively, this study reveals that ferroptosis was involved in lung epithelial cell injury and inflammation induced by CS, and CUR may alleviate CS-induced injury, inflammation, and ferroptosis of lung epithelial cell.


Author(s):  
Kai Kang ◽  
Qiang Zhou ◽  
Lander McGinn ◽  
Tara Nguyen ◽  
Yuncin Luo ◽  
...  

2021 ◽  
pp. 108794
Author(s):  
Kaichuan Chen ◽  
Minjie Sheng ◽  
Jie Zhang ◽  
Guoquan Yan ◽  
Bing Li

Sign in / Sign up

Export Citation Format

Share Document