Application of the BAMO-AMMO Alternative Block Energetic Thermoplastic Elastomer in Composite Propellant

2014 ◽  
Vol 39 (5) ◽  
pp. 689-693 ◽  
Author(s):  
Chi Zhang ◽  
Yun-Jun Luo ◽  
Qing-Jie Jiao ◽  
Bin Zhai ◽  
Xue-Yong Guo
1989 ◽  
Author(s):  
R. W. Fletcher ◽  
H. W. Cheung

2017 ◽  
Vol 90 (3) ◽  
pp. 550-561 ◽  
Author(s):  
Prithwiraj Mandal ◽  
Siva Ponnupandian ◽  
Soumyadip Choudhury ◽  
Nikhil K. Singha

ABSTRACT Thiol-ene modification of high vinyl content thermoplastic elastomeric styrene butadiene styrene (SBS) block copolymer (BCP) was carried out using different thiolating agents in toluene at 70 °C. 1H NMR analysis confirmed the participation of vinyl double bond in the thiol-ene modification reaction of SBS. Surface morphology of the block copolymers evaluated by atomic force microscopy analysis showed higher roughness after the thiol-ene reaction. The thiol-modified SBS block copolymer showed better adhesion strength and oil resistance properties than the pristine SBS.


Author(s):  
A Hamdi ◽  
A Boulenouar ◽  
N Benseddiq

No unified stress-based criterion exists, in the literature, for predicting the rupture of hyperelastic materials subjected to mutiaxial loading paths. This paper aims to establish a generalized rupture criterion under plane stress loading for elastomers. First, the experimental set up, at breaking, including various loading modes, is briefly described and commented. It consists of uniaxial tests, biaxial tests and pure shear tests, performed on different rubbers. The used vulcanizate and thermoplastic rubber materials are a Natural Rubber (NR), a Styrene Butadiene Rubber (SBR), a Polyurethane (PU) and a Thermoplastic elastomer (TPE). Then, we have investigated a new theoretical approach, based upon the principal stresses, to establish a failure criterion under quasi-static loadings. Thus, we have proposed a new analytical model expressed as a function of octahedral stresses. Quite good agreement is highlighted when comparing the ultimate stresses, at break, between the experimental data and the prediction of the proposed criteria using our rubber-like materials.


2021 ◽  
Vol 26 ◽  
pp. 102027
Author(s):  
Elnaz Esmizadeh ◽  
Ali Vahidifar ◽  
Sahar Shojaie ◽  
Ghasem Naderi ◽  
Mohammad Reza Kalaei ◽  
...  

RSC Advances ◽  
2019 ◽  
Vol 9 (51) ◽  
pp. 29765-29771 ◽  
Author(s):  
Minghui Xu ◽  
Xianming Lu ◽  
Hongchang Mo ◽  
Ning Liu ◽  
Qian Zhang ◽  
...  

A novel energetic polymeric binder PBFMO-b-PNMMO alternative block thermoplastic elastomer was developed for metal-rich solid propellants.


Sign in / Sign up

Export Citation Format

Share Document