scholarly journals Studies on PBFMO-b-PNMMO alternative block thermoplastic elastomers as potential binders for solid propellants

RSC Advances ◽  
2019 ◽  
Vol 9 (51) ◽  
pp. 29765-29771 ◽  
Author(s):  
Minghui Xu ◽  
Xianming Lu ◽  
Hongchang Mo ◽  
Ning Liu ◽  
Qian Zhang ◽  
...  

A novel energetic polymeric binder PBFMO-b-PNMMO alternative block thermoplastic elastomer was developed for metal-rich solid propellants.

Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 872
Author(s):  
Malgorzata Ulewicz ◽  
Alina Pietrzak

This article presents physical and mechanical properties of concrete composites that include waste thermoplastic elastomer (TPE) from the production process of car floor mats. Waste elastomer (2–8 mm fraction) was used as a substitute for fine aggregate in quantities of 2.5, 5.0, 7.5, and 10% of the cement weight. For all series of concrete, the following tests were carried out: compression strength, bending tensile strength, splitting tensile strength, absorbability, density, resistance to water penetration under pressure, frost resistance, and abrasion resistance, according to applicable standards. Moreover, SEM/EDS analysis was carried out on the surface microstructure of synthesized concrete composites. It was proven that the use of production waste from the production process of car floor mats in the quantity of 2.5% does not influence the change of the concrete microstructure and it does not result in the decrease of the mechanical parameters of concrete modified with waste. All concrete modified with the addition of waste meet standards requirements after carrying out 15 cycles of freezing and thawing, and the average decrease in compression strength did not exceed 20%. Adding waste in the quantity of 2.5% allows for limiting the use of aggregate by about 5%, which is beneficial for the natural environment.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1596
Author(s):  
Peng Zhang ◽  
Yongqi Zhang ◽  
Xuan Wang ◽  
Jiaming Yang ◽  
Wenbin Han

Blending thermoplastic elastomers into polypropylene (PP) can make it have great potential for high-voltage direct current (HVDC) cable insulation by improving its toughness. However, when a large amount of thermoplastic elastomer is blended, the electrical strength of PP will be decreased consequently, which cannot meet the electrical requirements of HVDC cables. To solve this problem, in this paper, the inherent structure of thermoplastic elastomer SEBS was used to construct acetophenone structural units on its benzene ring through Friedel–Crafts acylation, making it a voltage stabilizer that can enhance the electrical strength of the polymer. The DC electrical insulation properties and mechanical properties of acetylated SEBS (Ac-SEBS)/PP were investigated in this paper. The results showed that by doping 30% Ac-SEBS into PP, the acetophenone structural unit on Ac-SEBS remarkably increased the DC breakdown field strength of SEBS/PP by absorbing high-energy electrons. When the degree of acetylation reached 4.6%, the DC breakdown field strength of Ac-SEBS/ PP increased by 22.4% and was a little higher than that of PP. Ac-SEBS, with high electron affinity, is also able to reduce carrier mobility through electron capture, resulting in lower conductivity currents in SEBS/PP and suppressing space charge accumulation to a certain extent, which enhances the insulation properties. Besides, the highly flexible Ac-SEBS can maintain the toughening effect of SEBS, resulting in a remarkable increase in the tensile strength and elongation at the break of PP. Therefore, Ac-SEBS/PP blends possess excellent insulation properties and mechanical properties simultaneously, which are promising as insulation materials for HVDC cables.


1988 ◽  
Vol 61 (2) ◽  
pp. 223-237 ◽  
Author(s):  
A. U. Paeglis ◽  
F. X. O'Shea

Abstract The zinc sulfonate of EPDM, an ionic elastomer polymer, can be readily formulated into useful thermoplastic elastomer compounds having beneficial properties and processing characteristics. The thermoplastic processing characteristics of these ionic elastomers are uniquely controlled by “ionolyzers,” preferential ionic plasticizers. These additives induce thermal reversibility in the ionic crosslink and control the response of the ionic associations to temperature. Ionic elastomer compounds maintain many of the performance features characteristic of vulcanized EPDM, such as low-temperature flexibility, thermal stability, and weatherability, while providing the added advantages of heat weldability and elimination of vulcanization. We have developed a cost-effective ionic elastomer formulation that meets or exceeds the RMA recommendations for black EPDM in a demanding, high performance application, single-ply roofing membrane. High-strength lap seams can be rapidly fabricated using portable hot air welders, a technique unavailable to conventional vulcanized EPDM sheet. Other applications have been investigated for these polymers, such as hose, footwear, mechanical goods, adhesives, impact modifiers, and asphalt modifiers both as thermoplastic elastomers and as modifiers for other materials. These applications have taken advantage of the unique rheological and solubility properties of these polymers. In addition, a new polymer grade offers an advance in the ability to formulate higher strength and more highly filled and extended ionic elastomer compositions.


2015 ◽  
Vol 17 (4) ◽  
pp. 74-81 ◽  
Author(s):  
Sandra Paszkiewicz ◽  
Iwona Pawelec ◽  
Anna Szymczyk ◽  
Zbigniew Rosłaniec

Abstract This paper presents a comparative study on which type of platelets nanofiller, organic or inorganic, will affect the properties of thermoplastic elastomer matrix in the stronger manner. Therefore, poly(trimethylene terephthalate-block-poly(tetramethylene oxide) copolymer (PTT-PTMO) based nanocomposites with 0.5 wt.% of clay (MMT), graphene nanoplatelets (GNP) and graphene oxide (GO) have been prepared by in situ polymerization. The structure of the nanocomposites was characterized by transmission electron microscopy (TEM) in order to present good dispersion without large aggregates. It was indicated that PTT-PTMO/GNP composite shows the highest crystallization temperature. Unlike the addition of GNP and GO, the introduction of MMT does not have great effect on the glass transition temperature of PTMO-rich soft phase. An addition of all three types of nanoplatelets in the nanocomposites caused the enhancement in tensile modulus and yield stress. Additionally, the cyclic tensile tests showed that prepared nanocomposites have values of permanent set slightly higher than neat PTT-PTMO.


MRS Advances ◽  
2021 ◽  
Author(s):  
Takeshi Aoyagi

Abstract We achieved high-throughput prediction of the stress–strain (S–S) curves of thermoplastic elastomers by combining hierarchical simulation and deep learning. ABA triblock copolymer with a phase-separated structure was used as a thermoplastic elastomer model. The S–S curves of the ABA triblock copolymers were calculated from the hierarchical simulation of self-consistent field theory calculations and coarse-grained molecular dynamics simulations. Because such hierarchical simulations require considerable computational resources, we applied a deep learning technique to accelerate the prediction. Sets of phase-separated structures and the S–S curves obtained from the hierarchical simulation were used to train a 3D convolutional neural network. Using the trained network, we confirmed that the predicted S–S curves of the untrained structures accurately reproduced the simulation results. These results will enable us to design novel polymers and phase-separated structures with desired S–S curves by high-throughput screening of a wide variety of structures. Graphic abstract


2020 ◽  
pp. 30-32
Author(s):  
E. Yu. Lapkovskaya ◽  
P. O. Sukhodaev ◽  
V. E. Red’kin ◽  
A. I. Lyamkin ◽  
D. V. Ershov

Samples of thermoplastic elastomers based on polyvinyl chloride (PVC) modified with ultrafine detonation-synthesed (nano) diamonds were obtained. It was found that small additives of nanodiamonds improve the strength characteristics and arrange the structure of PVC. A method that allows obtaining a uniform distribution of nanoparticles in a polymer matrix is proposed.


1991 ◽  
Vol 64 (3) ◽  
pp. 469-480 ◽  
Author(s):  
E. N. Kresge

Abstract Thermoplastic elastomers based on blends of polyolefins are an important family of engineering materials. Their importance arises from a combination of rubbery properties along with their thermoplastic nature in contrast to thermoset elastomers. The development of polyolefin thermoplastic elastomer blends follows somewhat that of thermoplastic elastomers based on block copolymers such as styrene-butadiene-styrene triblock copolymer and multisegmented polyurethane thermoplastic elastomers which were instrumental in showing the utility of thermoplastic processing methods. Polyoleflns are based on coordination catalysts that do not easily lend themselves to block or multisegmented copolymer synthesis. However, since polyolefins have many important attributes favorable to useful elastomeric systems, there was considerable incentive to produce thermoplastic elastomers based on simple α-olefins by some means. Low density, chemical stability, weather resistance, and ability to accept compounding ingredients without compromising physical properties are highly desirable. These considerations led to the development of polyolefin thermoplastic elastomer blends, and two types are now widely used: blends of ethylene-propylene rubber (EPM) with polypropylene (PP) and blends of EPDM and PP in which the rubber phase is highly crosslinked. This article reviews the nature of these blends. Both physical and Theological properties are very dependent on the morphology and crosslink density of the blend system. Moreover, the usefulness of practical systems depends extensively on compounding technology based on added plasticizers and fillers.


Polymers ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1074 ◽  
Author(s):  
Ivan Kopal ◽  
Marta Harničárová ◽  
Jan Valíček ◽  
Jan Krmela ◽  
Ondrej Lukáč

The presented work deals with the creation of a new radial basis function artificial neural network-based model of dynamic thermo-mechanical response and damping behavior of thermoplastic elastomers in the whole temperature interval of their entire lifetime and a wide frequency range of dynamic mechanical loading. The created model is based on experimental results of dynamic mechanical analysis of the widely used thermoplastic polyurethane, which is one of the typical representatives of thermoplastic elastomers. Verification and testing of the well-trained radial basis function neural network for temperature and frequency dependence of dynamic storage modulus, loss modulus, as well as loss tangent prediction showed excellent correspondence between experimental and modeled data, including all relaxation events observed in the polymeric material under study throughout the monitored temperature and frequency interval. The radial basis function artificial neural network has been confirmed to be an exceptionally high-performance artificial intelligence tool of soft computing for the effective predicting of short-term viscoelastic behavior of thermoplastic elastomer systems based on experimental results of dynamic mechanical analysis.


Polymers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 641 ◽  
Author(s):  
Justyna Miedzianowska ◽  
Marcin Masłowski ◽  
Krzysztof Strzelec

This work is focused on thermoplastic elastomers composites (TPEs) reinforced with straw. Crop waste with different particle size was used as a filler of ethylene-octene rubber (EOR). Application of cheap and renewable natural fiber like straw into a TPE medium is not fully recognized and explored. The effect of fiber orientation induced by two processing techniques on the different mechanical properties of composites was investigated. Microscopic images were used to present the tested straw fractions and observe the arrangement and dispersion of fibers in the polymer matrix. It was found that the usage of an injection molding process allowed for the forming of a more homogenous dispersion of short fiber particles in the elastomer matrix. An oriented straw filler and polymer chains resulted in the improved mechanical strength of the whole system as evidenced by the obtained values of tensile strength almost two times higher for injected composites. In addition, all composites showed very good resistance to thermo-oxidative aging, where the aging factor oscillated within the limits of one, regardless of the processing method and the amount of bioadditive used. On the other hand, vulcanized composites were characterized by greater tear resistance, for which Fmit values increased by up to 600% compared to the reference sample.


Proceedings ◽  
2020 ◽  
Vol 49 (1) ◽  
pp. 163
Author(s):  
Akihiro Matsuda ◽  
Shigeru Kawahara

In this paper, mechanical properties of thermoplastic elastomers were investigated to expand the applicability of thermoplastic elastomers to the impact load reduction for the sports equipment. The thermoplastic elastomers show both thermoplastic and elastomeric properties. These are expected to apply to the impact load reduction in sports equipment due to good processability and less-smell. In this study, thermoplastic elastomers were applied for monotonic and cyclic tensile loading tests. The thermoplastic elastomer (TPE) materials in this study were newly developed for the specific purpose of impact load reduction. The nonlinear hyperelastic model considering the viscosity and damage model was applied to the tensile loading test results. finite element analysis (FEA) results of TPE specimens with periodic geometric shapes to reduce impact load were investigated.


Sign in / Sign up

Export Citation Format

Share Document