scholarly journals Nucleocytoplasmic transport of intrinsically disordered proteins studied by high‐speed super‐resolution microscopy

2020 ◽  
Vol 29 (6) ◽  
pp. 1459-1472 ◽  
Author(s):  
Samuel L. Junod ◽  
Joseph M. Kelich ◽  
Jiong Ma ◽  
Weidong Yang
2020 ◽  
Vol 48 (6) ◽  
pp. 2603-2614
Author(s):  
Nike Heinß ◽  
Mikhail Sushkin ◽  
Miao Yu ◽  
Edward A. Lemke

Nucleoporins (Nups) represent a range of proteins most known for composing the macromolecular assembly of the nuclear pore complex (NPC). Among them, the family of intrinsically disordered proteins (IDPs) phenylalanine-glycine (FG) rich Nups, form the permeability barrier and coordinate the high-speed nucleocytoplasmic transport in a selective way. Those FG-Nups have been demonstrated to participate in various biological processes besides nucleocytoplasmic transport. The high number of accessible hydrophobic motifs of FG-Nups potentially gives rise to this multifunctionality, enabling them to form unique microenvironments. In this review, we discuss the multifunctionality of disordered and F-rich Nups and the diversity of their localizations, emphasizing the important roles of those Nups in various regulatory and metabolic processes.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Andrei Vovk ◽  
Chad Gu ◽  
Michael G Opferman ◽  
Larisa E Kapinos ◽  
Roderick YH Lim ◽  
...  

Nuclear Pore Complexes (NPCs) are key cellular transporter that control nucleocytoplasmic transport in eukaryotic cells, but its transport mechanism is still not understood. The centerpiece of NPC transport is the assembly of intrinsically disordered polypeptides, known as FG nucleoporins, lining its passageway. Their conformations and collective dynamics during transport are difficult to assess in vivo. In vitro investigations provide partially conflicting results, lending support to different models of transport, which invoke various conformational transitions of the FG nucleoporins induced by the cargo-carrying transport proteins. We show that the spatial organization of FG nucleoporin assemblies with the transport proteins can be understood within a first principles biophysical model with a minimal number of key physical variables, such as the average protein interaction strengths and spatial densities. These results address some of the outstanding controversies and suggest how molecularly divergent NPCs in different species can perform essentially the same function.


2018 ◽  
Author(s):  
Ryo Hayama ◽  
Mirco Sorci ◽  
John J. Keating ◽  
Lee M. Hecht ◽  
Joel L. Plawsky ◽  
...  

ABSTRACTProtein-protein interactions are central to biological processes and the methods to thoroughly characterize them are of great interest. In vitro methods to examine protein-protein interactions are generally categorized into two classes: in-solution and surface-based methods. Here, using the multivalent interactions involved in nucleocytoplasmic transport as a model system, we examined the utility of three surface-based methods in characterizing rapid interactions involving intrinsically disordered proteins: atomic force microscopy, quartz crystal microbalance with dissipation, and surface plasmon resonance. Although results were comparable to those of previous reports, the existence of previously overlooked mass transport limitations was revealed. Additional experiments with a loss-of-interaction mutant variant demonstrated the existence of additional physical events and an uncharacterized binding mode. These results suggest the binding events that take place on the surface are more complex than initially assumed, prompting a need for re-interpretation of previous data.


Sign in / Sign up

Export Citation Format

Share Document