scholarly journals Contact prediction using mutual information and neural nets

2007 ◽  
Vol 69 (S8) ◽  
pp. 159-164 ◽  
Author(s):  
George Shackelford ◽  
Kevin Karplus
2012 ◽  
Vol 5 (1) ◽  
pp. 472 ◽  
Author(s):  
Mireille Gomes ◽  
Rebecca Hamer ◽  
Gesine Reinert ◽  
Charlotte M Deane

Entropy ◽  
2020 ◽  
Vol 22 (2) ◽  
pp. 131 ◽  
Author(s):  
Aleksander Wieczorek ◽  
Volker Roth

Combining the information bottleneck model with deep learning by replacing mutual information terms with deep neural nets has proven successful in areas ranging from generative modelling to interpreting deep neural networks. In this paper, we revisit the deep variational information bottleneck and the assumptions needed for its derivation. The two assumed properties of the data, X and Y, and their latent representation T, take the form of two Markov chains T − X − Y and X − T − Y . Requiring both to hold during the optimisation process can be limiting for the set of potential joint distributions P ( X , Y , T ) . We, therefore, show how to circumvent this limitation by optimising a lower bound for the mutual information between T and Y: I ( T ; Y ) , for which only the latter Markov chain has to be satisfied. The mutual information I ( T ; Y ) can be split into two non-negative parts. The first part is the lower bound for I ( T ; Y ) , which is optimised in deep variational information bottleneck (DVIB) and cognate models in practice. The second part consists of two terms that measure how much the former requirement T − X − Y is violated. Finally, we propose interpreting the family of information bottleneck models as directed graphical models, and show that in this framework, the original and deep information bottlenecks are special cases of a fundamental IB model.


Author(s):  
Antara Dasgupta ◽  
Renaud Hostache ◽  
RAAJ Ramasankaran ◽  
Guy J.‐P Schumann ◽  
Stefania Grimaldi ◽  
...  

1997 ◽  
Vol 36 (04/05) ◽  
pp. 257-260 ◽  
Author(s):  
H. Saitoh ◽  
T. Yokoshima ◽  
H. Kishida ◽  
H. Hayakawa ◽  
R. J. Cohen ◽  
...  

Abstract:The frequency of ventricular premature beats (VPBs) has been related to the risk of mortality. However, little is known about the temporal pattern of occurrence of VPBs and its relationship to autonomic activity. Hence, we applied a general correlation measure, mutual information, to quantify how VPBs are generated over time. We also used mutual information to determine the correlation between VPB production and heart rate in order to evaluate effects of autonomic activity on VPB production. We examined twenty subjects with more than 3000 VPBs/day and simulated ran-( dom time series of VPB occurrence. We found that mutual information values could be used to characterize quantitatively the temporal patterns of VPB generation. Our data suggest that VPB production is not random and VPBs generated with a higher value of mutual information may be more greatly affected by autonomic activity.


1978 ◽  
Vol 17 (01) ◽  
pp. 36-40 ◽  
Author(s):  
J.-P. Durbec ◽  
Jaqueline Cornée ◽  
P. Berthezene

The practice of systematic examinations in hospitals and the increasing development of automatic data processing permits the storing of a great deal of information about a large number of patients belonging to different diagnosis groups.To predict or to characterize these diagnosis groups some descriptors are particularly useful, others carry no information. Data screening based on the properties of mutual information and on the log cross products ratios in contingency tables is developed. The most useful descriptors are selected. For each one the characterized groups are specified.This approach has been performed on a set of binary (presence—absence) radiological variables. Four diagnoses groups are concerned: cancer of pancreas, chronic calcifying pancreatitis, non-calcifying pancreatitis and probable pancreatitis. Only twenty of the three hundred and forty initial radiological variables are selected. The presence of each corresponding sign is associated with one or more diagnosis groups.


Sign in / Sign up

Export Citation Format

Share Document