scholarly journals The crystal structure and identification of NQM1/YGR043C, a transaldolase from Saccharomyces cerevisiae

2008 ◽  
Vol 73 (4) ◽  
pp. 1076-1081 ◽  
Author(s):  
Hua Huang ◽  
Hui Rong ◽  
Xu Li ◽  
Shuilong Tong ◽  
Zhiqiang Zhu ◽  
...  
2004 ◽  
Vol 58 (3) ◽  
pp. 755-758 ◽  
Author(s):  
Joseph W. Arndt ◽  
Robert Schwarzenbacher ◽  
Rebecca Page ◽  
Polat Abdubek ◽  
Eileen Ambing ◽  
...  

2004 ◽  
Vol 9 (7) ◽  
pp. 611-618 ◽  
Author(s):  
Kenji Sugawara ◽  
Nobuo N. Suzuki ◽  
Yuko Fujioka ◽  
Noboru Mizushima ◽  
Yoshinori Ohsumi ◽  
...  

2011 ◽  
Vol 435 (3) ◽  
pp. 771-781 ◽  
Author(s):  
Tatu J. K. Haataja ◽  
M. Kristian Koski ◽  
J. Kalervo Hiltunen ◽  
Tuomo Glumoff

All of the peroxisomal β-oxidation pathways characterized thus far house at least one MFE (multifunctional enzyme) catalysing two out of four reactions of the spiral. MFE type 2 proteins from various species display great variation in domain composition and predicted substrate preference. The gene CG3415 encodes for Drosophila melanogaster MFE-2 (DmMFE-2), complements the Saccharomyces cerevisiae MFE-2 deletion strain, and the recombinant protein displays both MFE-2 enzymatic activities in vitro. The resolved crystal structure is the first one for a full-length MFE-2 revealing the assembly of domains, and the data can also be transferred to structure–function studies for other MFE-2 proteins. The structure explains the necessity of dimerization. The lack of substrate channelling is proposed based on both the structural features, as well as by the fact that hydration and dehydrogenation activities of MFE-2, if produced as separate enzymes, are equally efficient in catalysis as the full-length MFE-2.


2010 ◽  
Vol 9 (3) ◽  
pp. 479-486
Author(s):  
Rizna Triana Dewi ◽  
Yulia Anita ◽  
Enade Perdana Istyastono ◽  
Akhmad Darmawan ◽  
Muhamad Hanafi

Interaction of sulochrin to active site of glucosidase enzyme of Termotoga maritime has been studied by employing docking method using Molecular Operating Environment (MOE), in comparison with those are reports of established inhibitor α-glucosidase such as acarbose, miglitol and voglibose, and salicinol, as reference compounds. The crystal structure T. maritima α-glucanotransferase (PDB code: 1LWJ) can be employed to serve as the template in the virtual screening of S. cerevisiae α-glucosidase. The comparison between the binding pocket residues of Thermotoga maritima α-glucanotransferase and Saccharomyces cerevisiae α-glucosidase show a high sequence identity and similarity. The result showed that sulochrin could be located in the binding pocket and formed some interactions with the binding residues. The ligands showed proper predicted binding energy (-6.74 - -4.13 kcal/mol) and predicted Ki values (0.011 - 0.939 mM). Sulochrin has a possibility to serve as a lead compound in the development of new α-glucosidase inhibitor.   Keywords: Docking, sulochrin, α-glucosidase Inhibitor, Thermotoga maritime α-glucotransferase, Saccharomyces cerevisiae α-glucosidase, MOE


Author(s):  
Mohnad Abdalla ◽  
Ya-Nan Dai ◽  
Chang-Biao Chi ◽  
Wang Cheng ◽  
Dong-Dong Cao ◽  
...  

Glutaredoxins (Grxs) constitute a superfamily of proteins that perform diverse biological functions. TheSaccharomyces cerevisiaeglutaredoxin Grx6 not only serves as a glutathione (GSH)-dependent oxidoreductase and as a GSH transferase, but also as an essential [2Fe–2S]-binding protein. Here, the dimeric structure of the C-terminal domain of Grx6 (holo Grx6C), bridged by one [2Fe–2S] cluster coordinated by the active-site Cys136 and two external GSH molecules, is reported. Structural comparison combined with multiple-sequence alignment demonstrated that holo Grx6C is similar to the [2Fe–2S] cluster-incorporated dithiol Grxs, which share a highly conserved [2Fe–2S] cluster-binding pattern and dimeric conformation that is distinct from the previously identified [2Fe–2S] cluster-ligated monothiol Grxs.


2020 ◽  
Vol 212 (1) ◽  
pp. 107605 ◽  
Author(s):  
Meng-Hsuan Lin ◽  
Po-Chih Kuo ◽  
Yi-Chih Chiu ◽  
Yu-Yung Chang ◽  
Sheng-Chia Chen ◽  
...  

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Stephan Grunwald ◽  
Linus V. M. Hopf ◽  
Tobias Bock-Bierbaum ◽  
Ciara C. M. Lally ◽  
Christian M. T. Spahn ◽  
...  

Abstract The heterotrimeric NatC complex, comprising the catalytic Naa30 and the two auxiliary subunits Naa35 and Naa38, co-translationally acetylates the N-termini of numerous eukaryotic target proteins. Despite its unique subunit composition, its essential role for many aspects of cellular function and its suggested involvement in disease, structure and mechanism of NatC have remained unknown. Here, we present the crystal structure of the Saccharomyces cerevisiae NatC complex, which exhibits a strikingly different architecture compared to previously described N-terminal acetyltransferase (NAT) complexes. Cofactor and ligand-bound structures reveal how the first four amino acids of cognate substrates are recognized at the Naa30–Naa35 interface. A sequence-specific, ligand-induced conformational change in Naa30 enables efficient acetylation. Based on detailed structure–function studies, we suggest a catalytic mechanism and identify a ribosome-binding patch in an elongated tip region of NatC. Our study reveals how NAT machineries have divergently evolved to N-terminally acetylate specific subsets of target proteins.


Sign in / Sign up

Export Citation Format

Share Document