Innate factors causing differences in gene flow frequency from transgenic rice to different weedy rice biotypes

2011 ◽  
Vol 67 (6) ◽  
pp. 677-690 ◽  
Author(s):  
Jiao Zuo ◽  
Lianju Zhang ◽  
Xiaoling Song ◽  
Weimin Dai ◽  
Sheng Qiang
2017 ◽  
Vol 74 (2) ◽  
pp. 348-355 ◽  
Author(s):  
Joseph Dauer ◽  
Andrew Hulting ◽  
Dale Carlson ◽  
Luke Mankin ◽  
John Harden ◽  
...  

2021 ◽  
pp. 1-25
Author(s):  
Bao-Rong Lu

Abstract Potential environmental impact caused by pollen-mediated transgene flow from commercially cultivated genetically engineered (GE) crops to their non-GE crop counterparts and to their wild and weedy relatives has aroused tremendous biosafety concerns worldwide. This chapter provides information on the concept and classification of gene flow, the framework of the environmental biosafety assessment caused by pollen-mediated gene flow, and relevant case studies about transgene flow and its environmental impact. In general, gene flow refers to the movement of genes or genetic materials from a plant population to other populations. Crop-to- crop transgene flow at a considerable frequency may result in transgene 'contamination' of non-GE crops, causing potential food/feed biosafety problems and regional or international trade disputes. Crop-to- wild/weedy transgene flow may bring about environmental impacts, such as creating more invasive weeds, threatening local populations of wild relative species, or affecting genetic diversity of wild relatives, if the incorporated transgene can normally express in the recipient wild/weedy plants and significantly alter the fitness of the wild/weedy plants and populations. It is therefore necessary to establish a proper protocol to assess the potential environmental impacts caused by transgene flow. Three steps are important for assessing potential environment impacts of transgene flow to wild/weedy relatives: (i) to accurately measure the frequencies of transgene flow: (ii) to determine the expression level of a transgene incorporated in wild/weedy populations; and (iii) to estimate the fitness effect (benefit or cost) conferred by expression of a transgene in wild/weedy populations. The recently reported case of non-random allele transmission into GE and non-GE hybrid lineages or experimental populations challenges the traditional method of estimating the fitness effect for the assessment of environmental impacts of transgene flow. Furthermore, case studies of transgenic mitigation (TM) strategies illustrate ways that may reduce the impacts of a transgene on wild/weedy populations if crop-to- wild/weedy transgene flow is not preventable, such as in the case of gene flow from crop rice to its co-occurring weedy rice.


2016 ◽  
Vol 62 (No. 1) ◽  
pp. 16-22 ◽  
Author(s):  
Engku AK ◽  
M. Norida ◽  
Juraimi AS ◽  
Rafii MY ◽  
Abdullah SNA ◽  
...  

2019 ◽  
Vol 110 (5) ◽  
pp. 601-609 ◽  
Author(s):  
Marshall J Wedger ◽  
Tonapha Pusadee ◽  
Anupong Wongtamee ◽  
Kenneth M Olsen

Abstract Weedy relatives of crop species infest agricultural fields worldwide, reducing harvests and threatening global food security. These weeds can potentially evolve and adapt through gene flow from both domesticated crop varieties and reproductively compatible wild relatives. We studied populations of weedy rice in Thailand to investigate the role of introgression from cultivated and wild rice in their evolution. We examined 2 complementary sources of genetic data: allelic variation at 3 rice domestication genes (Bh4, controlling hull color; Rc, controlling pericarp color and seed dormancy; and sh4, controlling seed shattering), and 12 previously published SSR markers. Sampling spanned 3 major rice growing regions in Thailand (Lower North, North East, and Central Plain) and included 124 cultivated rice accessions, 166 weedy rice accessions, and 98 wild rice accessions. Weedy rice strains were overall closely related to the cultivated varieties with which they co-occur. Domestication gene data revealed potential adaptive introgression of sh4 shattering alleles from wild rice. Introgression of potentially maladaptive rc crop alleles (conferring reduced dormancy) was also detected, with the frequency of the crop allele highest in northern populations. Although SSR markers also indicated introgression into weed populations from wild and cultivated rice, there was little overlap with domestication genes in the accessions showing admixed ancestry. This suggests that much of the introgression we detected at domestication genes most likely reflects past introgression rather than recent gene flow. This finding has implications for understanding long-term gene flow dynamics between rice and its weedy and wild relatives, including potential risks of transgene escape.


2021 ◽  
Vol 9 (4) ◽  
pp. 259-271
Author(s):  
Xiao-Xuan Du ◽  
ZhongZe Piao ◽  
Kyung-Min Kim ◽  
Gang-Seob Lee
Keyword(s):  

2006 ◽  
Vol 173 (2) ◽  
pp. 346-353 ◽  
Author(s):  
Jun Rong ◽  
Bao-Rong Lu ◽  
Zhiping Song ◽  
Jun Su ◽  
Allison A. Snow ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document