flow frequency
Recently Published Documents


TOTAL DOCUMENTS

183
(FIVE YEARS 25)

H-INDEX

21
(FIVE YEARS 2)

2021 ◽  
Vol 9 (6) ◽  
pp. 1481-1503
Author(s):  
Carolin Kiefer ◽  
Patrick Oswald ◽  
Jasper Moernaut ◽  
Stefano Claudio Fabbri ◽  
Christoph Mayr ◽  
...  

Abstract. The frequency of debris flows is hypothesized to have increased in recent decades with enhanced rainstorm activity. Geological evidence to test the relationship between climate and debris flow activity for prehistoric times is scarce due to incomplete sediment records, complex stratigraphy, and insufficient age control, especially in Alpine environments. In lacustrine archives, the link between onshore debris flow processes and the sedimentary record in lakes is poorly investigated. We present an amphibious characterization of alluvial fan deltas and a continuous 4000-year debris flow record from Plansee (Tyrol, Austria), combining light detection and ranging (lidar) data, swath bathymetry, and sediment core analyses. The geomorphic investigation of two fan deltas in different developmental stages revealed an evolutionary pattern of backfilling and new channel formation onshore, together with active subaqueous progradation on a juvenile fan delta, major onshore sediment deposition, and only few, but larger, subaqueous deposits on a mature fan delta. Geomorphic evidence for stacked and braided debris flow lobes, subaquatic landslide deposits, and different types of turbidites in sediment cores facilitated a process-based event identification, i.e. distinguishing between debris-flow-induced or earthquake-induced turbidites throughout the 4000-year sedimentary record. We directly correlate subaqueous lobe-shaped deposits with high backscatter signals to terrestrial debris flow activity of the last century. Moreover, turbidite thickness distribution along a transect of four cores allows us to pinpoint numerous events as being related to debris flow activity on a juvenile fan delta. In the sediment core, debris-flow-induced turbidites feature a more gradual fining upward grain size trend and higher TOC (total organic carbon) and δ13C values compared to earthquake-induced turbidites. The 4000-year event record contains 138 debris-flow-induced turbidites separated into four phases of similar debris flow activity (df phases). df phase 1 (∼2120 to ∼2040 before the common era – BCE) reflects the second-highest observed event frequencies and is interpreted as being a postseismic landscape response. After a long period of long recurrence intervals without any outstanding increases in debris flow activity during df phase 2 (∼2040 BCE to ∼1520 common era – CE), there are slightly increased event frequencies in df phase 3 (∼1520 to ∼1920 CE). df phase 4 (∼1920 to 2018 CE) exhibits a drastic increase in debris flow activity, followed by the overall highest debris flow frequency of the whole record, which is about 7 times higher than during df phase 3. We show that the frequency increase in the debris-flow-induced turbidite record matches a previously postulated increase in debris flow events derived from aerial photography at Plansee in the last century. The triggering of debris flows is more controlled by short, intense precipitation than any other mass movement process, and we demonstrate that lacustrine debris flow records provide a unique inventory of hazard-relevant rainstorm frequencies over decades, centuries, and millennia. The presented increase in debris flow frequency since the start of the 20th century coincides with a twofold enhanced rainstorm activity in the Northern European Alps and, therefore, provides a novel technique for the systematic understanding of non-stationary debris flow frequencies in a changing climate.


Water Policy ◽  
2021 ◽  
Author(s):  
Richard M. Vogel ◽  
Charles N. Kroll

Abstract Extreme drought and resulting low streamflows occur throughout the U.S., causing billions of dollars in annual losses, detrimentally impacting ecosystems, as well as agricultural, hydropower, navigation, water supply, recreation, and a myriad of other water resource systems, leading to reductions in both the effectiveness and resiliency of our water resource infrastructure. Since 1966, with the introduction of Bulletin 13 titled ‘Methods of Flow Frequency Analysis’, the U.S. adopted uniform guidelines for performing flood flow frequency analysis to ensure and enable all federal agencies concerned with water resource design, planning, and management under flood conditions to obtain sensible, consistent, and reproducible estimators of flood flow statistics. Remarkably, over one-half century later, no uniform national U.S. guidelines for hydrologic drought streamflow frequency analysis exist, and the various assorted guidelines that do exist are not reliable because (1) they are based on methods developed for floods, which are distinctly different than low streamflows and (2) the methods do not take advantage of the myriad of advances in flood and low streamflow frequency analyses over the last 50 years. We provide a justification for the need for developing national guidelines for streamflow drought frequency analysis as an analog to the existing national guidelines for flood frequency analysis. Those guidelines should result in improved water resources design, planning, operations, and management under low streamflow conditions throughout the U.S. and could prove useful elsewhere.


2021 ◽  
Vol 929 ◽  
Author(s):  
Charlie Lin ◽  
Dinesh Kumar ◽  
Channing M. Richter ◽  
Shiyan Wang ◽  
Charles M. Schroeder ◽  
...  

Although the behaviour of fluid-filled vesicles in steady flows has been extensively studied, far less is understood regarding the shape dynamics of vesicles in time-dependent oscillatory flows. Here, we investigate the nonlinear dynamics of vesicles in large amplitude oscillatory extensional (LAOE) flows using both experiments and boundary integral (BI) simulations. Our results characterize the transient membrane deformations, dynamical regimes and stress response of vesicles in LAOE in terms of reduced volume (vesicle asphericity), capillary number ( ${Ca}$ , dimensionless flow strength) and Deborah number ( ${De}$ , dimensionless flow frequency). Results from single vesicle experiments are found to be in good agreement with BI simulations across a wide range of parameters. Our results reveal three distinct dynamical regimes based on vesicle deformation: pulsating, reorienting and symmetrical regimes. We construct phase diagrams characterizing the transition of vesicle shapes between pulsating, reorienting and symmetrical regimes within the two-dimensional Pipkin space defined by ${De}$ and ${Ca}$ . Contrary to observations on clean Newtonian droplets, vesicles do not reach a maximum length twice per strain rate cycle in the reorienting and pulsating regimes. The distinct dynamics observed in each regime result from a competition between the flow frequency, flow time scale and membrane deformation time scale. By calculating the particle stresslet, we quantify the nonlinear relationship between average vesicle stress and strain rate. Additionally, we present results on tubular vesicles that undergo shape transformation over several strain cycles. Broadly, our work provides new information regarding the transient dynamics of vesicles in time-dependent flows that directly informs bulk suspension rheology.


Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5768
Author(s):  
Josep M. Bergadà ◽  
Masoud Baghaei ◽  
Bhanu Prakash ◽  
Fernando Mellibovsky

Fluidic oscillators are often used to modify the forces fluid generates on any given bluff body; they can also be used as flow, pressure or acoustic sensors, with each application requiring a particular oscillator configuration. Regarding the fluidic oscillators’ main performance, a problem which is not yet clarified is the understanding of the feedback channel effect on the oscillator outlet mass flow frequency and amplitude, especially under compressible flow conditions. In order to bring light to this point, a set of three-dimensional Direct Numerical Simulations under compressible flow conditions are introduced in the present paper; four different feedback channel lengths and two inlet Reynolds numbers Re = 12,410 and Re = 18,617 are considered. From the results obtained, it is observed that as the inlet velocity increases, the fluidic oscillator outlet mass flow frequency and amplitude increase. An increase of the feedback channel length decreases the outlet mass flow oscillating frequency. At large feedback channel lengths, the former main oscillation tends to disappear, the jet inside the mixing chamber simply fluctuates at high frequencies. Once the Feedback Channel (FC) length exceeds a certain threshold, the oscillation stops. Under all conditions studied, pressure waves are observed to be traveling along the feedback channels, their origin and interaction with the jet entering the mixing chamber are thoroughly evaluated. The paper proves that jet oscillations are pressure-driven.


Author(s):  
Ильдар Шамилевич Насибуллаев ◽  
Олег Владимирович Даринцев

Представлено компьютерное численное моделирование системы жидкостного охлаждения камеры микрозахвата. Построены математические модели течения жидкости, переноса тепла жидкостью, теплообмена между жидкостью и радиатором, теплообмена между радиатором и элементом Пельтье. Определено влияние геометрических и физических параметров камеры микрозахвата на эффективность системы охлаждения, а также найдена зависимость максимальной температуры, установившейся на радиаторе, от скорости течения охлаждающей жидкости и коэффициента теплопередачи между радиатором и жидкостью для стационарного течения. Проведено исследование влияния нестационарного течения жидкости на колебания температуры радиатора. На основе результатов численного моделирования предложены простые аналитические формулы, которые можно использовать в программном обеспечении системы управления микрозахватом Numerical simulation of a micro-grip chamber fluid cooling system is presented. The mathematical models for mass and heat transfer in a fluid, heat exchange between the fluid and the radiator as well as the heat exchange between the radiator and the Peltier element are constructed in a variational form. The equations of hydrodynamics and heat equations were simulated by the finite element method in the FreeFem++ software. The influence of the geometric and physical parameters of the cooling system chamber on the efficiency of the device is determined. It is shown that as the heat transfer coefficient between the radiator and the fluid and the velocity of the coolant increases, the maximum steady-state temperature on the radiator nonlinearly decreases with saturation. When flow of coolant oscillates then the temperature on the radiator so does with the flow frequency. As the flow frequency increases, the amplitude of temperature fluctuations decreases. The increasing amplitude of flow oscillations leads to the amplification of the temperature amplitude. Using orthogonal central compositional method, the influence of the parameters (heat transfer coefficient, fluid velocity) on the efficiency of the cooling system is found, and the contribution of pairwise interaction is determined. Based on the results of numerical modelling, simple analytical formulas are proposed that can be used in the software module of the micro-grip cooling control system.


2021 ◽  
Author(s):  
Pierre-Adrien Opinel ◽  
Narakorn Srinil

Abstract This paper presents the experimental investigation of vortex-induced vibrations (VIV) of a flexibly mounted circular cylinder in combined current and wave flows. The same experimental setup has previously been used in our previous study (OMAE2020-18161) on VIV in regular waves. The system comprises a pendulum-type vertical cylinder mounted on two-dimensional springs with equal stiffness in in-line and cross-flow directions. The mass ratio of the system is close to 3, the aspect ratio of the tested cylinder based on its submerged length is close to 27, and the damping in still water is around 3.4%. Three current velocities are considered in this study, namely 0.21 m/s, 0.29 m/s and 0.37 m/s, in combination with the generated regular waves. The cylinder motion is recorded using targets and two Qualisys cameras, and the water elevation is measured utilizing a wave probe. The covered ranges of Keulegan-Carpenter number KC are [9.6–35.4], [12.8–40.9] and [16.3–47.8], and the corresponding ranges of reduced velocity Vr are [8–16.3], [10.6–18.4] and [14–20.5] for the cases with current velocity of 0.21 m/s, 0.29 m/s and 0.37 m/s, respectively. The cylinder response amplitudes, trajectories and vibration frequencies are extracted from the recorded motion signals. In all cases the cylinder oscillates primarily at the flow frequency in the in-line direction, and the in-line VIV component additionally appears for the intermediate (0.29 m/s) and high (0.37 m/s) current velocities. The cross-flow oscillation frequency is principally at two or three times the flow frequency in the low current case, similar to what is observed in pure regular waves. For higher current velocities, the cross-flow frequency tends to lock-in with the system natural frequency, as in the steady flow case. The inline and cross-flow cylinder response amplitudes of the combined current and regular wave flow cases are eventually compared with the amplitudes from the pure current and pure regular wave flow cases.


2021 ◽  
Author(s):  
Carolin Kiefer ◽  
Patrick Oswald ◽  
Jasper Moernaut ◽  
Stefano Claudio Fabbri ◽  
Christoph Mayr ◽  
...  

Abstract. The frequency of debris flows is hypothesized to increase in recent decades with enhanced rainstorm activity. Geological evidence to test this tendency for prehistoric times is scarce due to incomplete sediment records, complex stratigraphy, and insufficient age control especially in Alpine environments. In lacustrine archives, the link between onshore debris-flow processes and the depositional record in lake depocentres is poorly investigated. We present an amphibious characterization of alluvial fan deltas and a continuous 4,000 year debris-flow record from Plansee (Tyrol, Austria) combining Light detection and ranging (LiDAR) data, swath bathymetry, and sediment core analyses. The geomorphic investigation of two fan deltas in different developmental stages revealed a sediment delivery ratio of 7.9 % for the juvenile fan and no sediment transport into the lake on the mature fan within a 3-month summer period (May 2019–August 2019). Event deposits were dated and categorized according to their causal mechanism in a transect of four sediment cores. Debris flow-induced turbidites feature a more gradual fining-upward grain-size trend and higher TOC and δ13C values compared to earthquake-induced turbidites. Over the last 4,000 years, the record containing 138 debris flow-induced turbidites reveals four different debris-flow activity phases. Phase 1 (2050–1960 before the common era; BCE) depicts the second highest observed event frequencies. Phase 2 (1960 BCE–1550 common era; CE) shows large recurrence intervals. Phase 3 (1550–1905 CE) displays a gradual increase of event frequency. Phase 4 (1905–2018 CE) exhibits a debris-flow frequency increase between 1908 and 1928 CE, followed by the overall highest debris-flow frequency between 1928 and 1978 CE, and lower debris-flow frequencies since 1978 CE, which still exceed those of phase 1 to 3. Most remarkably, we find a ~7-fold increase of debris-flow frequency compared to the reference period 1700–1900 CE. The triggering of debris flows is more controlled by short intense rainstorms than for any other mass movement process and we demonstrate that lacustrine debris-flow records provide a unique inventory of hazard-relevant rainstorm frequencies over decades, centuries, and millennia. In a calibration period of 7 decades, we can show that the debris flow-induced turbidite record matches with the previously published debris-flow volume increase derived from aerial photography coincident to a pronounced rainstorm frequency increase. Here we show a millennium-scale debris-flow record that documents a ~7-fold increase in debris-flow frequencies in the 20th and 21st century coincident to 2-fold enhanced rainstorm activity in the Northern European Alps and provide a novel basis for systematic non-stationary estimation of future debris-flow frequencies in a changing climate.


Author(s):  
Nikola Đokić ◽  
Borislava Blagojević ◽  
Vladislava Mihailović

Flood flow frequency analysis (FFA) plays one of the key roles in many fields of hydraulic engineering and water resources management. The output of the FFA are sets of flood quantiles which are the base for the next step of the flood related analyses. The reliability of these results depends of many factors, and the first one is the reliability of the input data - datasets of the annual peak flow.  In practice, however, engineers often encounter the problem of incomplete datasets (missing data, data gaps and/or broken records). In this paper, we perform at-site focused analysis, and a complete  dataset of annual peak flows from 1931 to 2016 at the hydrologic station Senta of the Tisa river  we use as the reference dataset. From this original dataset  we remove some data and thus we obtain 15 new series that have gaps of different lengths and locations. Each dataset we further subject to flood frequency assessment using USACE HEC-SSP Bulletin 17C analysis, which introduces the concept of „perception threshold“ that can be used for missing data representation. For the data representation in HEC-SSP we use infinity for perception threshold upper bound and different lower bounds for all missing flows in one dataset, so that  we create 56 variants of input HEC-SSP datasets. The flood flow quantiles assessed from the datsets with missing data and different perception thresholds we evaluate through percentage error relative to the reference dataset and confidence interval width as uncertainty measure.  The results  for datasets with one gap up to 23% of the observation period, indicate acceptable flood quantile estimates are obtained even for larger return periods, by setting a lower perception threshold bound at the value of the highest observed flow in the available series of annual maxima.


Sign in / Sign up

Export Citation Format

Share Document