Susceptibility of standard clones and European field populations of the green peach aphid, Myzus persicae, and the cotton aphid, Aphis gossypii (Hemiptera: Aphididae), to the novel anthranilic diamide insecticide cyantraniliprole

2011 ◽  
Vol 68 (4) ◽  
pp. 629-633 ◽  
Author(s):  
Stephen P Foster ◽  
Ian Denholm ◽  
Jean-Luc Rison ◽  
Hector E Portillo ◽  
John Margaritopoulis ◽  
...  
2021 ◽  
Vol 38 (1) ◽  
pp. 50-61
Author(s):  
Jorge Eduardo Castresana ◽  
Laura Elena Puhl

The peach aphid Myzus persicae (Sulzer) and cotton aphid Aphis gossypii (Clover) (Hemiptera: Aphididae) are considered to be key pests affecting greenhouse pepper crops in Argentina as a result of their frequent occurrence and the seriousness of the damage caused by their feeding behavior and the transmission of virus. The goal of this research was to determine the efficiency of botanical products to control aphids and their side effects on parasitoids in this crop. Thus, three biorational pest control formulations derived from essential oils (EO) and plant extracts (Es) were tested, namely (i) neem EO, cinnamon EO, clove EO, oregano EO and American marigold EO (formulation 1); (ii) garlic EO and cinnamon EO (formulation 2); (iii) garlic E and rue E (formulation 3); and a soy lecithin adjuvant (lecithin), and finally, a control (water spray method). For this research, a completely randomized design was replicated 3 times. These treatments were applied directly to the foliage by means of a backpack sprayer on a weekly basis until the end of this trial. Subsequently, the total number of healthy aphids and parasitized aphids (mummies) on every leaf was recorded in the field and the laboratory through repeated measures Analysis of Variance (ANOVA) and LSD Fisher method. The results showed that formulation 1 and formulation 3 recorded a lower number of aphids and mummies compared to the other treatments. This evidence would demonstrate that these formulations repel aphids and parasitoids without the lethal effects caused by the use of broad spectrum insecticides.


HortScience ◽  
2004 ◽  
Vol 39 (6) ◽  
pp. 1332-1335 ◽  
Author(s):  
James D. Frantz ◽  
Jeffrey Gardner ◽  
Michael P. Hoffmann ◽  
Molly M. Jahn

A greenhouse screen for resistance to green peach aphid (GPA) [Myzus persicae (Sulzer)] was done using 50 pepper (Capsicum spp.) accessions. There were significant differences among accessions for damage rating, number of aphids per plant and number of aphids per leaf. Leaf pubescence, the basis of a reported nonpreference resistance mechanism to green peach aphid infestation, failed to protect pepper accessions from GPA colonization and damage. Sources of resistance and tolerance to cotton aphid [Aphis gossypi (Glover)] supported high levels of green peach aphid infestation and exhibited considerable damage. Although no accessions provided strong resistance to aphid colonization evident by significantly reduced numbers of aphids, several commercial varieties and sources of virus resistance exhibited strong tolerance to GPA, evident as reduced damage. Tolerant varieties could be an important component in integrated pest management of green peach aphid.


Plant Disease ◽  
2012 ◽  
Vol 96 (9) ◽  
pp. 1331-1336 ◽  
Author(s):  
E. N. Wosula ◽  
C. A. Clark ◽  
J. A. Davis

Sweetpotato feathery mottle virus (SPFMV) is a nonpersistently transmitted virus known to infect sweetpotato (Ipomoea batatas) and wild morning glory plants. SPFMV is vectored by various aphid species, among them the green peach aphid, Myzus persicae, and the cotton aphid, Aphis gossypii. Our objective was to determine whether differences in acquisition hosts (sweetpotato and morning glory), aphid species (M. persicae and A. gossypii), and infection status (single versus mixed infection) influenced transmission of SPFMV. SPFMV transmission from I. hederacea with a natural mixed infection by A. gossypii (39%) was significantly greater than in other host–virus combinations. Successful transmissions by A. gossypii were significantly greater compared with M. persicae in all host–virus combinations. Virus titers in source leaves were significantly greater in single- and mixed-infected I. hederacea and single-infected I. cordatotriloba compared with other host–virus combinations. There was a significant positive correlation between virus titer and transmission by both aphid species. These results suggest that, under controlled conditions, SPFMV is more readily transmitted from infected morning glory plants than from sweetpotato. Additionally, mixed-infected plants are better virus sources for transmission than single-infected, and A. gossypii is a more efficient vector than M. persicae under laboratory conditions.


2019 ◽  
Author(s):  
Rui Chen ◽  
Xiaomin Su ◽  
Jing Chen ◽  
Liyun Jiang ◽  
Ge-Xia Qiao

Abstract Wolbachia pipientis (Rickettsiales: Anaplasmataceae) is an intracellular symbiont residing in arthropods and filarial nematodes. Sixteen supergroups have been described from different host taxa. Four supergroups A, B, M, and N were found in aphids according to prior studies. The cotton aphid, Aphis gossypii, and the green peach aphid, Myzus persicae, are typical polyphagous species with global distributions. We conducted an extensive and systematic survey of Wolbachia infections in these aphids from China. High incidences of Wolbachia infection were detected. The total infection incidence was 60% in A. gossypii and 88% in M. persicae. Both aphid species were infected with supergroups A, B and M. Different incidences of infection were observed among the seven geographical regions in China, which suggested a positive relationship between Wolbachia infections and the geographical distribution of aphid species. Furthermore, multiple infection patterns (M, B, A&M, B&M, and A&B&M) were observed. Infection patterns M and B&M were detected in almost all populations. Patterns A&B&M and B showed geographical restriction in North China. Three factors can possibly influence the Wolbachia infection incidences and patterns: the geographical distribution, aphid species, and different supergroup types.


Author(s):  
R.A. Bagrov ◽  
◽  
V.I. Leunov

The mechanisms of transmission of potato viruses from plants to aphid vectors and from aphids to uninfected plants are described, including the example of the green peach aphid (Myzus persicae, GPA). Factors affecting the spreading of tuber necrosis and its manifestation on plants infected with potato leafroll virus (PLRV) are discussed. Recommendations for PLRV and GPA control in the field are given.


Sign in / Sign up

Export Citation Format

Share Document