Expression of the double-stranded RNA of the soybean pod borer Leguminivora glycinivorella (Lepidoptera: Tortricidae) ribosomal protein P0 gene enhances the resistance of transgenic soybean plants

2017 ◽  
Vol 73 (12) ◽  
pp. 2447-2455 ◽  
Author(s):  
Fanli Meng ◽  
Yang Li ◽  
Zhenyuan Zang ◽  
Na Li ◽  
Ruixue Ran ◽  
...  
2003 ◽  
Vol 71 (11) ◽  
pp. 6562-6572 ◽  
Author(s):  
Salvador Iborra ◽  
Manuel Soto ◽  
Javier Carrión ◽  
Ana Nieto ◽  
Edgar Fernández ◽  
...  

ABSTRACT In this study, we examined the immunogenic properties of the Leishmania infantum acidic ribosomal protein P0 (LiP0) in the BALB/c mouse model. The humoral and cellular responses induced by the administration of the LiP0 antigen, either as soluble recombinant LiP0 (rLiP0) or as a plasmid DNA formulation (pcDNA3-LiP0), were determined. Also, the immunological response associated with a prime-boost strategy, consisting of immunization with pcDNA3-LiP0 followed by a boost with rLiP0, was assayed. Immunization with rLiP0 induced a predominant Th2-like humoral response, but no anti-LiP0 antibodies were induced after immunization with pcDNA3-LiP0, whereas a strong humoral response consisting of a mixed immunoglobulin G2a (IgG2a)-IgG1 isotype profile was induced in mice immunized with the prime-boost regime. For all three immunization protocols, rLiP0-stimulated production of gamma interferon (IFN-γ) in both splenocytes and lymph node cells from immunized mice was observed. However, it was only when mice were immunized with pcDNA3-LiP0 that noticeable protection against L. major infection was achieved, as determined by both lesion development and parasite burden. Immunization of mice with LiP0-DNA primes both CD4+ and CD8+ T cells, which, with the L. major challenge, were boosted to produce significant levels of IL-12-dependent, antigen-specific IFN-γ. Taken together, these data indicate that genetic vaccination with LiP0 induces protective immunological effector mechanisms, yet the immunological response elicited by LiP0 is not sufficient to keep the infection from progressing.


2004 ◽  
Vol 161 (11) ◽  
pp. 1211-1224 ◽  
Author(s):  
J.A. De Ronde ◽  
W.A. Cress ◽  
G.H.J. Krüger ◽  
R.J. Strasser ◽  
J. Van Staden

1991 ◽  
Vol 19 (6) ◽  
pp. 1342-1342 ◽  
Author(s):  
Jesús Prieto ◽  
Elena Candel ◽  
Antonio Coloma

Genetics ◽  
1998 ◽  
Vol 150 (4) ◽  
pp. 1487-1495
Author(s):  
Maxim V Frolov ◽  
James A Birchler

Abstract In a search for modifiers of gene expression with the white eye color gene as a target, a third chromosomal P-element insertion mutant l(3)01544 has been identified that exhibits a strong pigment increase in a white-apricot background. Molecular analysis shows that the P-element insertion is found in the first intron of the gene surrounding the insertion site. Sequencing both the cDNA and genomic fragments revealed that the identified gene is identical to one encoding ribosomal protein P0/apurinic/apyrimidinic endonuclease. The P-element-induced mutation, l(3)01544, affects the steady-state level of white transcripts and transcripts of some other genes. In addition, l(3)01544 suppresses the variegated phenotypes of In(1)wm4h and In(1)y3P, suggesting a potential involvement of the P0 protein in modifying position effect variegation. The revertant generated by the precise excision of the P element has lost all mutant phenotypes. Recent work revealed that Drosophila ribosomal protein P0 contains an apurinic/apyrimidinic endonuclease activity. Our results suggest that this multifunctional protein is also involved in regulation of gene expression in Drosophila.


2019 ◽  
Vol 70 (15) ◽  
pp. 3825-3833 ◽  
Author(s):  
Shengjun Li ◽  
Shangang Jia ◽  
Lili Hou ◽  
Hanh Nguyen ◽  
Shirley Sato ◽  
...  

Abstract Transgenic technology was developed to introduce transgenes into various organisms to validate gene function and add genetic variations >40 years ago. However, the identification of the transgene insertion position is still challenging in organisms with complex genomes. Here, we report a nanopore-based method to map the insertion position of a Ds transposable element originating in maize in the soybean genome. In this method, an oligo probe is used to capture the DNA fragments containing the Ds element from pooled DNA samples of transgenic soybean plants. The Ds element-enriched DNAs are then sequenced using the MinION-based platform of Nanopore. This method allowed us to rapidly map the Ds insertion positions in 51 transgenic soybean lines through a single sequencing run. This strategy is high throughput, convenient, reliable, and cost-efficient. The transgenic allele mapping protocol can be easily translated to other eukaryotes with complex genomes.


2016 ◽  
Vol 53 ◽  
pp. 64 ◽  
Author(s):  
Yamila Carpio ◽  
Janet Velazquez ◽  
Yeny Leal ◽  
Naylin Herrera ◽  
Claudia García ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document