Studies on the control effect of Bacillus subtilis on wheat powdery mildew

2021 ◽  
Author(s):  
Deshan Xie ◽  
Xuewei Cai ◽  
Chunping Yang ◽  
Linjun Xie ◽  
Guangwei Qin ◽  
...  
2021 ◽  
Vol 12 ◽  
Author(s):  
Chaosheng Luo ◽  
Liankun Ma ◽  
Jinhui Zhu ◽  
Zengpeng Guo ◽  
Kun Dong ◽  
...  

Wheat powdery mildew (Blumeria graminis f. sp. tritici) and stripe rust (Puccinia striiformis Westend f. sp. tritici) restrict wheat production in southwest China. Nitrogen fertilizers may influence outbreaks of these wheat diseases where wheat/faba beans are intercropped. To clarify how intercropping and varying nitrogen levels influence wheat powdery mildew and stripe rust and their relationship with crop yield, two consecutive field experiments were conducted from 2015 to 2017. Three cropping regimens (monocropped wheat, monocropped faba beans, and intercropped wheat/faba beans) and four nitrogen levels [N0 (0 kg⋅ha–1), N1 (90 kg⋅ha–1), N2 (180 kg⋅ha–1), and N3 (270 kg⋅ha–1)] were evaluated. In two consecutive planting seasons, the incidence and disease index of powdery mildew and stripe rust increased, while the disease index was more affected by nitrogen levels than their incidence. Both diseases were most prevalent at the N3 level. Compared with monocropping, intercropping (N0–N3 levels) reduced the incidence of powdery mildew by 2.8–37.0% and disease index by 15.5–47.4%, increased the relative control effect by 10.7–56.2 and 16.3–47.2%, reduced the incidence of stripe rust by 2.9–42.7% and disease index by 8.3–42.2%, and increased the relative control effect by 5.9–43.7 and 8.8–42.1%. The relative control efficacy of intercropping was most affected by N2 level. Intercropping yield increased with increasing nitrogen by 25.0–46.8%, and overall land equivalent ratio (LER) was 1.30–1.39. The correlation coefficient between disease index and wheat yield for both diseases was −0.7429 to −0.9942, a significant negative correlation, most significant at N1. Nitrogen regulation in intercropped wheat/faba beans can control powdery mildew and stripe rust, and optimize wheat yield. Intercropping at 180 kg ha–1 N2 resulted in the highest yield.


2021 ◽  
Vol 693 (1) ◽  
pp. 012124
Author(s):  
Jinling Zhao ◽  
Guomin Chu ◽  
Hao Yan ◽  
Lei Hu ◽  
Yongan Xue

1995 ◽  
Vol 43 (1) ◽  
pp. 47-52 ◽  
Author(s):  
Miroslav Švec ◽  
Marta Miklovičová ◽  
Milan Sýkora ◽  
Eduard Krippel

2000 ◽  
Vol 78 (10) ◽  
pp. 1288-1293 ◽  
Author(s):  
Jérôme Muchembled ◽  
Anissa Lounès-Hadj Sahraoui ◽  
Anne Grandmougin-Ferjani ◽  
Michel Sancholle

The total sterol composition of conidia of the obligate plant pathogen Blumeria (= Erysiphe) graminis f.sp. tritici has been analysed as a function of their ontogeny during sporulation. Two main classes of sterols were characterized: 24-ethylsterols (24-ethylcholesta-5,22-dienol, 24-ethylcholesterol, and Δ5-avenasterol) and 24-methylsterols (24-methylenecholesterol and episterol). Our results show that sterol composition is greatly modified during ontogeny of B. graminis conidia both at the qualitative and quantitative levels. In particular, 24-methylsterols, e.g., 24-methylenecholesterol and episterol, are the major sterols in old conidia whereas 24-ethylsterols, e.g., 24-ethylcholesta-5,22-dienol, 24-ethylcholesterol, and Δ5-avenasterol, are the main sterols in young conidia.Key words: Erysiphe, wheat powdery mildew, sterols, ontogeny.


PROTOPLASMA ◽  
2014 ◽  
Vol 252 (4) ◽  
pp. 1167-1179 ◽  
Author(s):  
Yulin Cheng ◽  
Juanni Yao ◽  
Hongchang Zhang ◽  
Lili Huang ◽  
Zhensheng Kang

2012 ◽  
Vol 34 ◽  
pp. 112-118 ◽  
Author(s):  
Na Liu ◽  
Guoshu Gong ◽  
Min Zhang ◽  
You Zhou ◽  
Zhixiang Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document