Dissection and QTL Mapping of Component Traits of Resistance to Wheat Powdery Mildew at Early Infection Stage

2011 ◽  
Vol 37 (7) ◽  
pp. 1219-1228
Author(s):  
Hua-Zhong WANG ◽  
Zhen ZHANG ◽  
Yang HE ◽  
Jie-Yu YUE
2021 ◽  
Author(s):  
Marion C. Mueller ◽  
Lukas Kunz ◽  
Seraina Schudel ◽  
Sandrine Kammerecker ◽  
Jonatan Isaksson ◽  
...  

AbstractIntrogressions of chromosomal segments from related species into wheat are important sources of resistance against fungal diseases. The durability and effectiveness of introgressed resistance genes upon agricultural deployment is highly variable - a phenomenon that remains poorly understood as the corresponding fungal avirulence genes are largely unknown. Until its breakdown, the Pm17 resistance gene introgressed from rye to wheat provided broad resistance against powdery mildew (Blumeria graminis). Here, we used QTL mapping to identify the corresponding wheat mildew avirulence effector AvrPm17. It is encoded by two paralogous genes that exhibit signatures of re-occurring gene conversion events and are members of a mildew sub-lineage specific effector cluster. Extensive haplovariant mining in wheat mildew and related sub-lineages identified several ancient virulent AvrPm17 variants that were present as standing genetic variation in wheat powdery mildew prior to the Pm17 introgression, thereby paving the way for the rapid breakdown of the Pm17 resistance. QTL mapping in mildew identified a second genetic component likely corresponding to an additional resistance gene present on the 1AL.1RS translocation carrying Pm17. This gene remained previously undetected due to suppressed recombination within the introgressed rye chromosomal segment. We conclude that the initial effectiveness of 1AL.1RS was based on simultaneous introgression of two genetically linked resistance genes. Our results demonstrate the relevance of pathogen-based genetic approaches to disentangle complex resistance loci in wheat. We propose that identification and monitoring of avirulence gene diversity in pathogen populations becomes an integral part of introgression breeding to ensure effective and durable resistance in wheat.Significance StatementDomesticated and wild wheat relatives provide an important source of new immune receptors for wheat resistance breeding against fungal pathogens. The durability of these resistance genes is variable and difficult to predict, yet it is crucial for effective resistance breeding. We identified a fungal effector protein recognised by an immune receptor introgressed from rye to wheat. We found that variants of the effector allowing the fungus to overcome the resistance are ancient. They were already present in the wheat powdery mildew gene pool before the introgression of the immune receptor and are therefore responsible for the rapid resistance breakdown. Our study demonstrates that the effort to identify new resistance genes should be accompanied by studies of avirulence genes on the pathogen side.


2021 ◽  
Author(s):  
Deshan Xie ◽  
Xuewei Cai ◽  
Chunping Yang ◽  
Linjun Xie ◽  
Guangwei Qin ◽  
...  

2021 ◽  
Vol 693 (1) ◽  
pp. 012124
Author(s):  
Jinling Zhao ◽  
Guomin Chu ◽  
Hao Yan ◽  
Lei Hu ◽  
Yongan Xue

1995 ◽  
Vol 43 (1) ◽  
pp. 47-52 ◽  
Author(s):  
Miroslav Švec ◽  
Marta Miklovičová ◽  
Milan Sýkora ◽  
Eduard Krippel

2000 ◽  
Vol 78 (10) ◽  
pp. 1288-1293 ◽  
Author(s):  
Jérôme Muchembled ◽  
Anissa Lounès-Hadj Sahraoui ◽  
Anne Grandmougin-Ferjani ◽  
Michel Sancholle

The total sterol composition of conidia of the obligate plant pathogen Blumeria (= Erysiphe) graminis f.sp. tritici has been analysed as a function of their ontogeny during sporulation. Two main classes of sterols were characterized: 24-ethylsterols (24-ethylcholesta-5,22-dienol, 24-ethylcholesterol, and Δ5-avenasterol) and 24-methylsterols (24-methylenecholesterol and episterol). Our results show that sterol composition is greatly modified during ontogeny of B. graminis conidia both at the qualitative and quantitative levels. In particular, 24-methylsterols, e.g., 24-methylenecholesterol and episterol, are the major sterols in old conidia whereas 24-ethylsterols, e.g., 24-ethylcholesta-5,22-dienol, 24-ethylcholesterol, and Δ5-avenasterol, are the main sterols in young conidia.Key words: Erysiphe, wheat powdery mildew, sterols, ontogeny.


2018 ◽  
Vol 19 (6) ◽  
pp. 788 ◽  
Author(s):  
Joo-Hyung Choi ◽  
Kwiwan Jeong ◽  
Su-Mi Kim ◽  
Mi-Kyeong Ko ◽  
Su-Hwa You ◽  
...  

PROTOPLASMA ◽  
2014 ◽  
Vol 252 (4) ◽  
pp. 1167-1179 ◽  
Author(s):  
Yulin Cheng ◽  
Juanni Yao ◽  
Hongchang Zhang ◽  
Lili Huang ◽  
Zhensheng Kang

2012 ◽  
Vol 34 ◽  
pp. 112-118 ◽  
Author(s):  
Na Liu ◽  
Guoshu Gong ◽  
Min Zhang ◽  
You Zhou ◽  
Zhixiang Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document