early infection
Recently Published Documents


TOTAL DOCUMENTS

465
(FIVE YEARS 113)

H-INDEX

45
(FIVE YEARS 4)

2022 ◽  
Vol 12 ◽  
Author(s):  
Paulami Koley ◽  
Subhadip Brahmachari ◽  
Amitava Saha ◽  
Camelia Deb ◽  
Monimala Mondal ◽  
...  

In the field of phytohormone defense, the general perception is that salicylate (SA)-mediated defense is induced against biotrophic pathogens while jasmonate (JA)-mediated defense functions against necrotrophic pathogens. Our goals were to observe the behavior of the necrotrophic pathogen Rhizoctonia solani in the vicinity, on the surface, and within the host tissue after priming the host with SA or JA, and to see if priming with these phytohormones would affect the host defense differently upon infection. It was observed for the first time, that R. solani could not only distinguish between JA versus SA-primed tomato plants from a distance, but surprisingly avoided SA-primed plants more than JA-primed plants. To corroborate these findings, early infection events were monitored and compared through microscopy, Scanning Electron Microscopy, and Confocal Laser Scanning Microscopy using transformed R. solani expressing green fluorescence protein gene (gfp). Different histochemical and physiological parameters were compared between the unprimed control, JA-primed, and SA-primed plants after infection. The expression of a total of fifteen genes, including the appressoria-related gene of the pathogen and twelve marker genes functioning in the SA and JA signaling pathways, were monitored over a time course during early infection stages. R. solani being traditionally designated as a necrotroph, the major unexpected observations were that Salicylate priming offered better tolerance than Jasmonate priming and that it was mediated through the activation of SA-mediated defense during the initial phase of infection, followed by JA-mediated defense in the later phase. Hence, the present scenario of biphasic SA-JA defense cascades during R. solani infection, with SA priming imparting maximum tolerance, indicate a possible hemibiotrophic pathosystem that needs to be investigated further.


2022 ◽  
Author(s):  
Minh Dao Ngo ◽  
Stacey Bartlett ◽  
Helle Bielefeldt-Ohmann ◽  
Cheng Xiang Foo ◽  
Roma Sinha ◽  
...  

We previously reported that the oxidised cholesterol-sensing receptor GPR183 is significantly downregulated in blood from tuberculosis (TB) patients with diabetes compared to TB patients without co-morbidities and that lower GPR183 expression in blood is associated with more severe pulmonary TB on chest-x-ray consistent with observations in dysglycemic mice. To further elucidate the role of this receptor and its endogenous high affinity agonist 7α,25-dihydroxycholesterol (7α,25-OHC) in the lung, we studied high fat diet (HFD)-induced 28 dysglycemic mice infected with M.tuberculosis. We found that the 7α,25-OHC-producing enzymes cholesterol 25-hydroxylase (CH25H) and cytochrome P450 family 7 subfamily member B1 (CYP7B1) were highly upregulated upon M.tuberculosis infection in the lungs of normoglycemic mice, and this was associated with increased expression of GPR183 indicative of effective recruitment of GPR183-expressing immune cells to the site of infection. We demonstrated that CYP7B1 was predominantly expressed by macrophages in the centre of TB granulomas. Expression of CYP7B1 was significantly blunted in lungs from HFD-fed dysglycemic animals and this coincided with 36 delayed recruitment of macrophages to the lung during early infection and more severe lung pathology. GPR183 deficient mice similarly had reduced macrophage recruitment during early infection demonstrating a requirement of the GPR183/oxysterol axis for macrophage infiltration into the lung in TB. Together our data demonstrate that oxidised cholesterols and GPR183 play an important role in positioning macrophages to the site of M. tuberculosis infection and that this is impaired by HFD-induced dysglycemia, adding a mechanistic explanation to the poorer TB outcomes in patients with diabetes.


2021 ◽  
Author(s):  
Yuan Xie ◽  
Zhifang Wang ◽  
Ke Li ◽  
Dongwei Liu ◽  
Yifan Jia ◽  
...  

Fusarium pseudograminearum is a phytopathogen that causes wheat crown rot disease worldwide. Fusarium pseudograminearum megabirnavirus 1 (FpgMBV1) was isolated from the hypovirulent strain FC136-2A of F. pseudograminearum as a novel dsRNA mycovirus belonging to the family Megabirnaviridae. Here we examined the effects of FpgMBV1 on colony morphology and pathogenicity of F. pseudograminearum. Through hyphal tip culture, we obtained virus-free progeny of strain FC136-2A, referred to as FC136-2A-V-.FpgMBV1 was transferred horizontally to another virus-free strain, WZ-8A-HygR-V-. The progeny that obtained through horizontal transfer was referred to as WZ-8A-HygR-V+. Colony morphology was similar between the FpgMBV1-positive and -negative strains. The ability to penetrate cellophane in vitro was lost and pathogenicity on wheat plants was reduced significantly in the FpgMBV1-positive strains relative to the FpgMBV1-negative strains. Microscopic observations showed a 6-h delay in the formation of appressoria-like structures in FC136-2A relative to FC136-2A-V-. And mycelium extension was significantly longer in wheat coleoptiles infected by WZ-8A-HygR-V- than in that infected by WZ-8A-HygR-V+ at 12 and 20 hours after inoculation (HAI). In addition, expression of five genes that encode cell wall-degrading enzymes differed significantly between FpgMBV1-positive and -negative strains at 12 and 20 HAI during early infection of wheat cells by conidia. This study provides evidence for the hypovirulence effect of FpgMBV1 on F. pseudograminearum and suggests that the underlying mechanism involves unsuccessful early infection and perhaps cell wall degradation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lijia Jia ◽  
Zhen Chen ◽  
Yecheng Zhang ◽  
Li Ma ◽  
Liying Wang ◽  
...  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently the most important emerging pathogen worldwide, but its early transcriptional dynamics and host immune response remain unclear. Herein, the expression profiles of viral interactions with different types of hosts were comprehensively dissected to shed light on the early infection strategy of SARS-CoV-2 and the host immune response against infection. SARS-CoV-2 was found to exhibit a two-stage transcriptional strategy within the first 24 h of infection, comprising a lag phase that ends with the virus being paused and a log phase that starts when the viral load increases rapidly. Interestingly, the host innate immune response was found not to be activated (latent period) until the virus entered the log stage. Noteworthy, when intracellular immunity is suppressed, SARS-CoV-2 shows a correlation with dysregulation of metal ion homeostasis. Herein, the inhibitory activity of copper ions against SARS-CoV-2 was further validated in in vitro experiments. Coronavirus disease 2019-related genes (including CD38, PTX3, and TCN1) were also identified, which may serve as candidate host-restricted factors for interventional therapy. Collectively, these results confirm that the two-stage strategy of SARS-CoV-2 effectively aids its survival in early infection by regulating the host intracellular immunity, highlighting the key role of interferon in viral infection and potential therapeutic candidates for further investigations on antiviral strategies.


2021 ◽  
Author(s):  
Julien S. Luneau ◽  
Aude Cerutti ◽  
Brice Roux ◽  
Sébastien Carrère ◽  
Marie‐Françoise Jardinaud ◽  
...  

2021 ◽  
Vol 10 (23) ◽  
pp. 5474
Author(s):  
Belén G. Sanchez ◽  
Jose M. Gasalla ◽  
Manuel Sánchez-Chapado ◽  
Alicia Bort ◽  
Inés Diaz-Laviada

This study was undertaken due to the urgent need to explore reliable biomarkers for early SARS-CoV-2 infection. We performed a retrospective study analyzing the serum levels of the cardiovascular biomarkers IL-6, TNF-α, N-terminal pro-B natriuretic peptide, cardiac troponin T (cTnT), ischemia-modified albumin (IMA) and pregnancy-associated plasma protein-A (PAPP-A) in 84 patients with COVID-19.Patients were divided into three groups according to their RT-qPCR and IgG values: acute infection (n = 35), early infection (n = 25) or control subjects (n = 24). Levels of biomarkers were analyzed in patient serum samples using commercially available ELISA kits. Results showed a significant increase in IMA and PAPP-A levels in the early infected patients. Moreover, multivariate analysis and receiver operating characteristic (ROC) curve showed that IMA and PAPP-A had excellent discrimination value for the early stage of COVID-19. For IMA, the area under the ROC curve (AUC) had a value of 0.94 (95% confidence interval (CI): 0.881–0.999). Likewise, the serum level of PAPP-A was significantly higher in patients with early infection than in the control subjects (AUC = 0.801 (95% CI: 0.673–0.929)). The combined use of IMA and PAPP-A enhanced the sensitivity for total SARS-CoV-2-infected patients to 93%. These results suggest that the increased levels of PAPP-A and IMA shed light on underlying mechanisms of COVID-19 physiopathology and might be used as efficient biomarkers with high sensitivity and specificity for the early stage of COVID-19. Importantly, when monitoring pregnancy and cardiovascular diseases using PAPP-A or IMA levels, a SARS-CoV-2 infection should be discarded for proper interpretation of the results.


Pancreatology ◽  
2021 ◽  
Author(s):  
Robert A. Moran ◽  
Christopher Halloran ◽  
Qiang Guo ◽  
Chandra Umapathy ◽  
Niloofar Y. Jalaly ◽  
...  

2021 ◽  
Vol 8 (Supplement_1) ◽  
pp. S88-S89
Author(s):  
Sanjat Kanjilal

Abstract Background Serial testing for SARS-CoV-2 is necessary to prevent spread from patients early in infection. Testing intervals are largely derived from viral kinetic studies performed early in the COVID-19 pandemic. Laboratory and epidemiologic data accrued over the past year present an opportunity to use empiric models to define optimal serial testing intervals and features predictive of early infection. Methods Retrospective analysis of 15,314 inpatients within the Mass General Brigham healthcare system who had two tests within a 36-hour period between May 1 2020 and May 29 2021. Early infection was defined as having a negative test followed by a positive test. Patients with prior positive tests were excluded. The primary outcome was the proportion of patients in early infection over the total number tested serially, stratified by 4-hour testing intervals from the timestamp of the first test. Multivariate modeling was used to identify features predictive of early infection. Covariates included demographics, body site, PCR assay, location, community incidence, percent positivity, and median / skew of Ct value distributions. Results Of 19,971 test pairs, 193 (0.97%) were characterized as a negative followed by a positive within 36 hours. Bivariate analysis showed a close association between negative to positive test pairs during the first surge in spring 2020 that was not present during the winter surge. Negative to positive test pairs were most common in the 12 to 16 hour time interval (51/193, 26%, Figure 1). After controlling for covariates, the Roche cobas assay was more likely to identify patients with a negative to positive test pair relative to the Cepheid Xpert, Hologic Panther Fusion and Roche Liat assays. A second specimen from the lower respiratory tract was more likely to lead to a positive relative to other body sites. Community incidence and Ct value distributions were not predictive and there were no differences between nasal and nasopharyngeal swabs. All 4-hour time intervals from 16 to 36 hours were significant for predicting a negative to positive test pair (Table 1). Figure 1. Distribution of negative to positive test pairs by 4 hour time intervals Table 1. Multivariate regression predicting a negative to positive test pair Conclusion The likelihood of detecting early infection is dependent on PCR platform and body site of sampling. A range of time intervals between 16 to 36 hours after the initial test were likely to identify positive cases. Disclosures Sanjat Kanjilal, MD, MPH, GlaskoSmithKline (Advisor or Review Panel member)


2021 ◽  
Vol 10 (21) ◽  
pp. 4985
Author(s):  
Marc-Pascal Meier ◽  
Ina Juliana Bauer ◽  
Arvind K. Maheshwari ◽  
Martin Husen ◽  
Katharina Jäckle ◽  
...  

Background: While primary hip arthroplasty is the most common operative procedure in orthopedic surgery, a periprosthetic joint infection is its most severe complication. Early detection and prediction are crucial. In this study, we aimed to determine the value of postoperative C-reactive protein (CRP) and develop a formula to predict this rare, but devastating complication. Methods: We retrospectively evaluated 708 patients with primary hip arthroplasty. CRP, white blood cell count (WBC), and several patient characteristics were assessed for 20 days following the operative procedure. Results: Eight patients suffered an early acute periprosthetic infection. The maximum CRP predicted an infection with a sensitivity and specificity of 75% and 56.9%, respectively, while a binary logistic regression reached values of 75% and 80%. A multinominal logistic regression, however, was able to predict an early infection with a sensitivity and specificity of 87.5% and 78.9%. With a one-phase decay, 71.6% of the postoperative CRP-variance could be predicted. Conclusion: To predict early acute periprosthetic joint infection after primary hip arthroplasty, a multinominal logistic regression is the most promising approach. Including five parameters, an early infection can be predicted on day 5 after the operative procedure with 87.5% sensitivity, while it can be excluded with 78.9% specificity.


Sign in / Sign up

Export Citation Format

Share Document